論文の概要: How Far Are We from Intelligent Visual Deductive Reasoning?
- arxiv url: http://arxiv.org/abs/2403.04732v2
- Date: Fri, 8 Mar 2024 06:47:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-11 10:42:54.829583
- Title: How Far Are We from Intelligent Visual Deductive Reasoning?
- Title(参考訳): Intelligent Visual Deductive Reasoningからどのくらい離れているのか?
- Authors: Yizhe Zhang, He Bai, Ruixiang Zhang, Jiatao Gu, Shuangfei Zhai, Josh
Susskind, Navdeep Jaitly
- Abstract要約: 私たちは、より洗練されているが探求の少ない領域である、視覚に基づく誘惑的推論を掘り下げる。
現在のSOTA VLMでは、未公表の盲点が発見されている。
LLMに適用した場合に有効な標準的な戦略は、視覚的推論タスクによってもたらされる課題にシームレスに対応しないことがわかった。
- 参考スコア(独自算出の注目度): 43.51562357823971
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-Language Models (VLMs) such as GPT-4V have recently demonstrated
incredible strides on diverse vision language tasks. We dig into vision-based
deductive reasoning, a more sophisticated but less explored realm, and find
previously unexposed blindspots in the current SOTA VLMs. Specifically, we
leverage Raven's Progressive Matrices (RPMs), to assess VLMs' abilities to
perform multi-hop relational and deductive reasoning relying solely on visual
clues. We perform comprehensive evaluations of several popular VLMs employing
standard strategies such as in-context learning, self-consistency, and
Chain-of-thoughts (CoT) on three diverse datasets, including the Mensa IQ test,
IntelligenceTest, and RAVEN. The results reveal that despite the impressive
capabilities of LLMs in text-based reasoning, we are still far from achieving
comparable proficiency in visual deductive reasoning. We found that certain
standard strategies that are effective when applied to LLMs do not seamlessly
translate to the challenges presented by visual reasoning tasks. Moreover, a
detailed analysis reveals that VLMs struggle to solve these tasks mainly
because they are unable to perceive and comprehend multiple, confounding
abstract patterns in RPM examples.
- Abstract(参考訳): gpt-4vのような視覚言語モデル(vlms)は最近、多様な視覚言語タスクに関する驚くべき進歩を実証している。
私たちは、より洗練された、より探索の少ない領域であるビジョンに基づく推論を掘り下げ、現在のsoma vlmsで未公開の盲点を見つけます。
具体的には、Ravenのプログレッシブ・マトリクス(RPM)を利用して、視覚的手がかりのみに依存するマルチホップ・リレーショナルおよび帰納的推論を行うVLMの能力を評価する。
我々は、Mensa IQテスト、インテリジェンステスト、RAVENを含む3つの多様なデータセット上で、コンテキスト内学習、自己整合性、チェーン・オブ・シント(CoT)といった標準的な戦略を用いて、いくつかの人気のあるVLMの包括的な評価を行う。
その結果、テキストベース推論におけるllmの印象的な能力にもかかわらず、視覚的推論における同等の能力を達成するには程遠いことが判明した。
LLMに適用した場合に有効な標準的な戦略は、視覚的推論タスクによってもたらされる課題にシームレスに対応しないことがわかった。
さらに、詳細な分析により、VLMは、主にRPMの例において複数の抽象パターンを知覚し理解できないため、これらの課題を解決するのに苦労していることが明らかとなった。
関連論文リスト
- LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMは、人間が扱いやすいようないくつかの基本的なタスク、例えば単語トラウベリーの文字数rを数えるのに苦労する。
我々は,高度な数学的およびコーディング推論能力の伝達可能性について,特殊なLCMから単純なカウントタスクまでの測定を行う。
微調整や文脈内学習といった戦略と比較すると、係り受け推論はLLMのタスクをより知覚するのに役立つ最も堅牢で効率的な方法であることがわかる。
論文 参考訳(メタデータ) (2024-10-18T04:17:16Z) - Enhancing Advanced Visual Reasoning Ability of Large Language Models [20.32900494896848]
VL(Vision-Language)研究の最近の進歩は、複雑な視覚的推論のための新しいベンチマークを引き起こした。
我々はCVR-LLM(Complex Visual Reasoning Large Language Models)を提案する。
提案手法は,反復的自己修正ループを用いて,画像の詳細なコンテキスト認識記述に変換する。
また、LLMの文脈的理解と推論を強化するために、新しいマルチモーダル・インコンテキスト学習(ICL)手法を導入する。
論文 参考訳(メタデータ) (2024-09-21T02:10:19Z) - Large Vision-Language Models as Emotion Recognizers in Context Awareness [14.85890824622433]
文脈対応感情認識(CAER)は、様々な文脈から感情を知覚する必要がある複雑で重要なタスクである。
以前のアプローチは主に、イメージから感情的な手がかりを抽出する洗練されたアーキテクチャを設計することに焦点を当てていた。
本稿では,LVLM(Large Vision-Language Models)を活用したCAERタスクの実現の可能性について,体系的に検討する。
論文 参考訳(メタデータ) (2024-07-16T01:28:06Z) - Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs [50.77984109941538]
近年のマルチモーダル LLM の視覚能力は, いまだに系統的な欠点を呈している。
CLIP-blind pairs'(CLIP-blind pairs)を識別する。
様々なCLIPに基づく視覚・言語モデルの評価を行い、CLIPモデルに挑戦する視覚パターンとマルチモーダルLLMの問題との間に顕著な相関関係を見出した。
論文 参考訳(メタデータ) (2024-01-11T18:58:36Z) - Good Questions Help Zero-Shot Image Reasoning [110.1671684828904]
質問駆動型視覚探索(QVix)は、大規模視覚言語モデル(LVLM)の探索能力を高める新しい促進戦略である。
QVixは、視覚的なシーンのより広い探索を可能にし、視覚的な質問応答や視覚的エンターテイメントといったタスクにおけるLVLMの推論精度と深さを改善している。
我々は,ScienceQAやきめ細かな視覚分類など,難易度の高いゼロショット視覚言語ベンチマークの評価を行い,QVixが既存の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2023-12-04T03:18:51Z) - Large Language Models are Visual Reasoning Coordinators [144.67558375045755]
視覚的推論のために複数の視覚言語モデルを協調する新しいパラダイムを提案する。
提案手法は,視覚的質問応答における最先端性能を実現するため,命令チューニングの変種であるCola-FTを提案する。
また,テキスト内学習の変種であるCola-Zeroは,ゼロおよび少数ショット設定で競合性能を示すことを示す。
論文 参考訳(メタデータ) (2023-10-23T17:59:31Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
MLLM(Multi-modal large language model)は、大規模言語モデル(LLM)に基づいて訓練される。
マルチモーダルなタスクでは優れているが、MLLMの純粋なNLP能力はしばしば過小評価され、テストされていない。
LLMをMLLMに移行するための一般的な戦略である視覚的インストラクションチューニングは、予期せぬ、興味深いことに、改善された真理性と倫理的整合性の両方を達成するのに役立ちます。
論文 参考訳(メタデータ) (2023-09-13T17:57:21Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。