論文の概要: Evaluation of LLMs on Syntax-Aware Code Fill-in-the-Middle Tasks
- arxiv url: http://arxiv.org/abs/2403.04814v1
- Date: Thu, 7 Mar 2024 05:05:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-11 22:07:16.317314
- Title: Evaluation of LLMs on Syntax-Aware Code Fill-in-the-Middle Tasks
- Title(参考訳): 構文対応型コードフィルインザミドルタスクにおけるLCMの評価
- Authors: Linyuan Gong, Sida Wang, Mostafa Elhoushi, Alvin Cheung
- Abstract要約: Syntax-Aware Fill-in-the-Middle (SAFIM)は、コードFill-in-the-Middle(FIM)タスク上でLLM(Large Language Models)を評価するための新しいベンチマークである。
このベンチマークは、コードブロックや条件式などのプログラム構造の構文対応補完に焦点を当てている。
- 参考スコア(独自算出の注目度): 13.796839010758218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Syntax-Aware Fill-In-the-Middle (SAFIM), a new benchmark for
evaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM)
task. This benchmark focuses on syntax-aware completions of program structures
such as code blocks and conditional expressions, and includes 17,720 examples
from multiple programming languages, sourced from recent code submissions after
April 2022 to minimize data contamination. SAFIM provides a robust framework
with various prompt designs and novel syntax-aware post-processing techniques,
facilitating accurate and fair comparisons across LLMs. Our comprehensive
evaluation of 15 LLMs shows that FIM pretraining not only enhances FIM
proficiency but also improves Left-to-Right (L2R) inference using LLMs. Our
findings challenge conventional beliefs and suggest that pretraining methods
and data quality have more impact than model size. SAFIM thus serves as a
foundational platform for future research in effective pretraining strategies
for code LLMs. The evaluation toolkit and dataset are available at
https://github.com/gonglinyuan/safim, and the leaderboard is available at
https://safimbenchmark.com.
- Abstract(参考訳): 本研究では,SAFIM (Syntax-Aware Fill-in-the-Middle) を導入し,File-in-the-Middle (FIM) タスク上でLLM(Large Language Models) を評価する。
このベンチマークは、コードブロックや条件式などのプログラム構造の構文対応補完に焦点を当てており、データ汚染を最小限に抑えるため、2022年4月以降の最近のコード提出から得られた、複数のプログラミング言語の17,720の例を含んでいる。
SAFIMは、様々なプロンプト設計と新しい構文認識後処理技術を備えた堅牢なフレームワークを提供し、LLM間の正確かつ公正な比較を容易にする。
15LLMの総合評価の結果,FIMプレトレーニングはFIMの熟練度を高めるだけでなく,L2R(Left-to-Right)推論も改善することがわかった。
本研究は従来の信念に挑戦し,事前学習法とデータ品質がモデルサイズよりも影響が大きいことを示唆する。
したがって、SAFIMは将来のコードLLMの効果的な事前学習戦略研究の基盤となる。
評価ツールキットとデータセットはhttps://github.com/gonglinyuan/safimで、リーダーボードはhttps://safimbenchmark.comで入手できる。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Source Code Summarization in the Era of Large Language Models [23.715005053430957]
大規模言語モデル(LLM)は、コード関連のタスクのパフォーマンスを大幅に向上させた。
本稿では,LLMにおけるコード要約の体系的および包括的研究を行う。
論文 参考訳(メタデータ) (2024-07-09T05:48:42Z) - FineSurE: Fine-grained Summarization Evaluation using LLMs [22.62504593575933]
FineSurEは,大規模言語モデル(LLM)を用いた要約タスクに適した,きめ細かい評価器である。
また、忠実さに加えて完全性と簡潔さの基準を採用し、多次元評価を可能にしている。
論文 参考訳(メタデータ) (2024-07-01T02:20:28Z) - Is In-Context Learning Sufficient for Instruction Following in LLMs? [38.29072578390376]
実効性はあるものの, MT-Bench の命令微調整と比較すると, ICL とAL とのアライメントは依然として不十分であることがわかった。
我々は、我々の知識、ICLの体系的比較、低データ体制における命令追従のための命令微調整(IFT)を初めて提供する。
論文 参考訳(メタデータ) (2024-05-30T09:28:56Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - Which Syntactic Capabilities Are Statistically Learned by Masked
Language Models for Code? [51.29970742152668]
精度に基づく測定に依存することで、モデルの能力が過大評価される可能性があることを強調する。
これらの問題に対処するために,SyntaxEval in Syntactic Capabilitiesというテクニックを導入する。
論文 参考訳(メタデータ) (2024-01-03T02:44:02Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - Pre-training LLMs using human-like development data corpus [3.5757761767474876]
我々は,子どもが見るのとほぼ同じ数のトークンを用いて,文脈的単語表現を学習する能力について,LLM(Large Language Models)を事前訓練し評価する。
異なるアーキテクチャで、エポック間のパフォーマンスの変化を評価し、タスクの厳密で厳密なトラックに対する事前トレーニングメトリクスを報告します。
論文 参考訳(メタデータ) (2023-11-08T13:13:23Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
マルチモーダル言語モデル(MLLM)は、マルチモーダルタスクを実行するために強力なLLMに依存している。
本稿では,MLLM 評価ベンチマーク MME について述べる。
知覚能力と認知能力の両方を合計14のサブタスクで測定する。
論文 参考訳(メタデータ) (2023-06-23T09:22:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。