Theory of Multimode Squeezed Light Generation in Lossy Media
- URL: http://arxiv.org/abs/2403.05259v2
- Date: Tue, 2 Apr 2024 19:16:29 GMT
- Title: Theory of Multimode Squeezed Light Generation in Lossy Media
- Authors: Denis A. Kopylov, Torsten Meier, Polina R. Sharapova,
- Abstract summary: A unified theoretical approach to describe the properties of multimode squeezed light generated in a lossy medium is presented.
For an important class of Gaussian states, we derive master equations for the second-order correlation functions.
Various techniques and strategies to introduce broadband modes can be considered.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A unified theoretical approach to describe the properties of multimode squeezed light generated in a lossy medium is presented. This approach is valid for Markovian environments and includes both a model of discrete losses based on the beamsplitter approach and a generalized continuous loss model based on the spatial Langevin equation. For an important class of Gaussian states, we derive master equations for the second-order correlation functions and illustrate their solution for both frequency-independent and frequency-dependent losses. Studying the mode structure, we demonstrate that in a lossy environment no broadband basis without quadrature correlations between the different broadband modes exists. Therefore, various techniques and strategies to introduce broadband modes can be considered. We show that the Mercer expansion and the Williamson decomposition do not provide modes in which the maximal squeezing contained in the system can be measured. In turn, we find a new broadband basis that maximizes squeezing in the lossy system and present an algorithm to construct it.
Related papers
- Using system-reservoir methods to derive effective field theories for
broadband nonlinear quantum optics: a case study on cascaded quadratic
nonlinearities [0.0]
nonlinear interactions among a large number of frequency components induce complex dynamics that may defy analysis.
We introduce a perturbative framework for factoring out reservoir degrees of freedom and establishing a concise effective model.
Our results highlight the utility of system-reservoir methods for deriving accurate, intuitive reduced models.
arXiv Detail & Related papers (2023-11-06T23:00:47Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z) - Survey of the Hierarchical Equations of Motion in Tensor-Train format
for non-Markovian quantum dynamics [0.0]
This work is a survey about the hierarchical equations of motion and their implementation with the tensor-train format.
We recall the link with the perturbative second order time convolution equations also known as the Bloch-Redfield equations.
The main points of the tensor-train expansion are illustrated in an example with a qubit interacting with a bath described by a Lorentzian spectral density.
arXiv Detail & Related papers (2023-03-08T14:21:43Z) - Combating errors in propagation of orbital angular momentum modes of
light in turbulent media [0.0]
We identify invariants for propagation of OAM modes through atmospheric and oceanic turbulence.
We then develop a method for combating errors in what we call an idealised crosstalk channel.
We construct quantum error correction and rejection codes for idealised crosstalk channels.
arXiv Detail & Related papers (2022-08-10T05:28:21Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Generalized theory of pseudomodes for exact descriptions of
non-Markovian quantum processes [0.0]
We develop an exact framework to describe the non-Markovian dynamics of an open quantum system.
We show how expanding the system using discrete modes allows for the full inclusion of non-Markovian effects.
arXiv Detail & Related papers (2020-02-22T17:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.