Bayesian Hierarchical Probabilistic Forecasting of Intraday Electricity Prices
- URL: http://arxiv.org/abs/2403.05441v2
- Date: Tue, 30 Jul 2024 14:46:12 GMT
- Title: Bayesian Hierarchical Probabilistic Forecasting of Intraday Electricity Prices
- Authors: Daniel Nickelsen, Gernot Müller,
- Abstract summary: We present a first study of Bayesian forecasting of electricity prices traded on the German continuous intraday market.
For validation we use the exceedingly volatile electricity prices of 2022, which have hardly been the subject of forecasting studies before.
We challenge the declared gold standard of using LASSO for feature selection in electricity price forecasting by presenting strong statistical evidence that OMP leads to better forecasting performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a first study of Bayesian forecasting of electricity prices traded on the German continuous intraday market which fully incorporates parameter uncertainty. A particularly large set of endogenous and exogenous covariables is used, handled through feature selection with Orthogonal Matching Pursuit (OMP) and regularising priors. Our target variable is the IDFull price index, forecasts are given in terms of posterior predictive distributions. For validation we use the exceedingly volatile electricity prices of 2022, which have hardly been the subject of forecasting studies before. As a benchmark model, we use all available intraday transactions at the time of forecast creation to compute a current value for the IDFull. According to the weak-form efficiency hypothesis, it would not be possible to significantly improve this benchmark built from last price information. We do, however, observe statistically significant improvement in terms of both point measures and probability scores. Finally, we challenge the declared gold standard of using LASSO for feature selection in electricity price forecasting by presenting strong statistical evidence that OMP leads to better forecasting performance.
Related papers
- Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market [0.0]
integration of renewable energy into electricity markets poses significant challenges to price stability.
This study explores the enhancement of probabilistic price prediction using Conformal Prediction (CP) techniques.
We propose an ensemble approach that combines the efficiency of quantile regression models with the robust coverage properties of time series adapted CP techniques.
arXiv Detail & Related papers (2025-02-07T13:57:47Z) - Prediction Interval Construction Method for Electricity Prices [4.194844503412904]
A conditional generative adversarial network is first presented to generate electricity price scenarios.
Different generated scenarios are stacked to obtain the probability densities, which can be applied to accurately reflect the uncertainty of electricity prices.
A reinforced prediction mechanism based on the volatility level of weather factors is introduced to address the spikes or volatile prices.
arXiv Detail & Related papers (2025-01-14T04:02:08Z) - Combining predictive distributions of electricity prices: Does
minimizing the CRPS lead to optimal decisions in day-ahead bidding? [0.0]
We study whether using CRPS learning, a novel weighting technique, leads to optimal decisions in day-ahead bidding.
We find that increasing the diversity of an ensemble can have a positive impact on accuracy.
The higher computational cost of using CRPS learning compared to an equal-weighted aggregation of distributions is not offset by higher profits.
arXiv Detail & Related papers (2023-08-29T17:10:38Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Multivariate Probabilistic Forecasting of Intraday Electricity Prices
using Normalizing Flows [62.997667081978825]
In Germany, the intraday electricity price typically fluctuates around the day-ahead price of the EPEX spot markets in a distinct hourly pattern.
This work proposes a probabilistic modeling approach that models the intraday price difference to the day-ahead contracts.
arXiv Detail & Related papers (2022-05-27T08:38:20Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - The impact of online machine-learning methods on long-term investment
decisions and generator utilization in electricity markets [69.68068088508505]
We investigate the impact of eleven offline and five online learning algorithms to predict the electricity demand profile over the next 24h.
We show we can reduce the mean absolute error by 30% using an online algorithm when compared to the best offline algorithm.
We also show that large errors in prediction accuracy have a disproportionate error on investments made over a 17-year time frame.
arXiv Detail & Related papers (2021-03-07T11:28:54Z) - Learning the Gap in the Day-Ahead and Real-Time Locational Marginal
Prices in the Electricity Market [0.0]
Machine learning algorithms and deep neural networks are used to predict the values of the price gap between day-ahead and real-time electricity markets.
The proposed methods are evaluated and neural networks showed promising results in predicting the exact values of the gap.
arXiv Detail & Related papers (2020-12-23T16:49:24Z) - Ensemble Forecasting for Intraday Electricity Prices: Simulating
Trajectories [0.0]
Recent studies have shown that the hourly German Intraday Continuous Market is weak-form efficient.
A probabilistic forecasting of the hourly intraday electricity prices is performed by simulating trajectories in every trading window.
The study aims to forecast the price distribution in the German Intraday Continuous Market in the last 3 hours of trading, but the approach allows for application to other continuous markets, especially in Europe.
arXiv Detail & Related papers (2020-05-04T10:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.