論文の概要: Modeling and predicting students' engagement behaviors using mixture Markov models
- arxiv url: http://arxiv.org/abs/2403.05556v1
- Date: Sat, 10 Feb 2024 19:03:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:36:53.270181
- Title: Modeling and predicting students' engagement behaviors using mixture Markov models
- Title(参考訳): 混合マルコフモデルを用いた学生のエンゲージメント行動のモデル化と予測
- Authors: R. Maqsood, P. Ceravolo, C. Romero, S. Ventura,
- Abstract要約: 本稿では,モデルに基づくクラスタリングを用いてK混合マルコフモデルを生成し,学習者の学習行動パターンを含むトレースをグループ化する。
予測最大化(EM)アルゴリズムの3つの変種を用いた2つの実データセットの実験的検討を行った。
提案したK-EMは、他の手法と比較して非常に有望な結果を示し、大きな性能差を達成している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Students' engagements reflect their level of involvement in an ongoing learning process which can be estimated through their interactions with a computer-based learning or assessment system. A pre-requirement for stimulating student engagement lies in the capability to have an approximate representation model for comprehending students' varied (dis)engagement behaviors. In this paper, we utilized model-based clustering for this purpose which generates K mixture Markov models to group students' traces containing their (dis)engagement behavioral patterns. To prevent the Expectation-Maximization (EM) algorithm from getting stuck in a local maxima, we also introduced a K-means-based initialization method named as K-EM. We performed an experimental work on two real datasets using the three variants of the EM algorithm: the original EM, emEM, K-EM; and, non-mixture baseline models for both datasets. The proposed K-EM has shown very promising results and achieved significant performance difference in comparison with the other approaches particularly using the Dataset. Hence, we suggest to perform further experiments using large dataset(s) to validate our method. Additionally, visualization of the resultant clusters through first-order Markov chains reveals very useful insights about (dis)engagement behaviors depicted by the students. We conclude the paper with a discussion on the usefulness of our approach, limitations and potential extensions of this work.
- Abstract(参考訳): 学生のエンゲージメントは、コンピュータベースの学習や評価システムとのインタラクションを通じて推定できる、進行中の学習プロセスへの関与のレベルを反映している。
学生エンゲージメントを刺激する事前条件は、生徒の多様な(非)エンゲージメント行動を理解するための近似表現モデルを持つことにある。
そこで本研究では,K混合マルコフモデルを生成するモデルベースクラスタリングを用いて,学習者の学習行動パターンを含むトレースをグループ化する。
また,K-EMと呼ばれるK平均値に基づく初期化手法も導入した。
EMアルゴリズムの3つの変種(オリジナルのEM, EmEM, K-EM, および両者の混合ベースラインモデル)を用いて、2つの実データに対して実験を行った。
提案したK-EMは非常に有望な結果を示し、特にデータセットを用いた他の手法と比較して大きな性能差が得られた。
そこで本研究では,大規模データセットを用いてさらなる実験を行い,本手法の有効性を検証することを提案する。
さらに、一階のマルコフ連鎖を通した結果のクラスタの可視化は、学生が描いた(非)エンゲージメント行動に関する非常に有用な洞察を明らかにしている。
本稿は,本研究のアプローチの有用性,限界,潜在的な拡張性について論じて締めくくった。
関連論文リスト
- Contextual Interaction via Primitive-based Adversarial Training For Compositional Zero-shot Learning [23.757252768668497]
合成ゼロショット学習(CZSL)は、既知の属性オブジェクト対を通じて新規な合成を識別することを目的としている。
CZSLタスクの最大の課題は、属性とオブジェクトの視覚的プリミティブの間の複雑な相互作用によって導入された大きな相違にある。
本稿では,モデルに依存しない原始的適応学習(PBadv)手法を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:18:30Z) - Joint Distributional Learning via Cramer-Wold Distance [0.7614628596146602]
高次元データセットの共分散学習を容易にするために,クレーマー-ウォルド距離正規化を導入し,クレーマー-ウォルド距離正規化法を提案する。
また、フレキシブルな事前モデリングを可能にする2段階学習手法を導入し、集約後と事前分布のアライメントを改善する。
論文 参考訳(メタデータ) (2023-10-25T05:24:23Z) - Towards Better Modeling with Missing Data: A Contrastive Learning-based
Visual Analytics Perspective [7.577040836988683]
データ不足は機械学習(ML)モデリングの課題となる可能性がある。
現在のアプローチは、特徴計算とラベル予測に分類される。
本研究は、観測データに欠落した値でモデル化するコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T13:16:24Z) - Ensemble Modeling for Multimodal Visual Action Recognition [50.38638300332429]
マルチモーダル動作認識のためのアンサンブルモデリング手法を提案する。
我々は,MECCANO[21]データセットの長期分布を処理するために,焦点損失の変種を用いて,個別のモダリティモデルを個別に訓練する。
論文 参考訳(メタデータ) (2023-08-10T08:43:20Z) - Class-Incremental Mixture of Gaussians for Deep Continual Learning [15.49323098362628]
本稿では,ガウスモデルの混合を連続学習フレームワークに組み込むことを提案する。
固定抽出器を用いたメモリフリーシナリオにおいて,本モデルが効果的に学習可能であることを示す。
論文 参考訳(メタデータ) (2023-07-09T04:33:19Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Learning with MISELBO: The Mixture Cookbook [62.75516608080322]
本稿では,VampPriorとPixelCNNデコーダネットワークを用いて,フローベース階層型変分オートエンコーダ(VAE)の正規化のための変分近似を初めて提案する。
我々は、この協調行動について、VIと適応的重要度サンプリングの新たな関係を描いて説明する。
我々は、MNISTおよびFashionMNISTデータセット上の負のログ類似度の観点から、VAEアーキテクチャの最先端結果を得る。
論文 参考訳(メタデータ) (2022-09-30T15:01:35Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Mixing Consistent Deep Clustering [3.5786621294068373]
良い潜在表現は、2つの潜在表現の線形を復号する際に意味的に混合出力を生成する。
本稿では,表現をリアルに見せるための混合一貫性深層クラスタリング手法を提案する。
提案手法は,クラスタリング性能を向上させるために,既存のオートエンコーダに付加可能であることを示す。
論文 参考訳(メタデータ) (2020-11-03T19:47:06Z) - Towards Open-World Recommendation: An Inductive Model-based
Collaborative Filtering Approach [115.76667128325361]
推奨モデルは、基礎となるユーザの関心を効果的に見積もり、将来の行動を予測することができる。
2つの表現モデルを含む帰納的協調フィルタリングフレームワークを提案する。
本モデルでは,限られたトレーニングレーティングと新規の未確認ユーザを対象に,数ショットのユーザに対して有望なレコメンデーションを行う。
論文 参考訳(メタデータ) (2020-07-09T14:31:25Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。