Improving Cognitive Diagnosis Models with Adaptive Relational Graph Neural Networks
- URL: http://arxiv.org/abs/2403.05559v1
- Date: Thu, 15 Feb 2024 14:12:38 GMT
- Title: Improving Cognitive Diagnosis Models with Adaptive Relational Graph Neural Networks
- Authors: Pengyang Shao, Chen Gao, Lei Chen, Yonghui Yang, Kun Zhang, Meng Wang,
- Abstract summary: Cognitive Diagnosis (CD) algorithms assist students by inferring their abilities on various knowledge concepts.
Recently, researchers have found that building and incorporating a student-exercise bipartite graph is beneficial for enhancing diagnostic performance.
We propose Adaptive Semantic-aware Graph-based Cognitive Diagnosis model (ASG-CD), which introduces a novel and effective way to leverage bipartite graph information in CD.
- Score: 33.76551090755183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cognitive Diagnosis (CD) algorithms receive growing research interest in intelligent education. Typically, these CD algorithms assist students by inferring their abilities (i.e., their proficiency levels on various knowledge concepts). The proficiency levels can enable further targeted skill training and personalized exercise recommendations, thereby promoting students' learning efficiency in online education. Recently, researchers have found that building and incorporating a student-exercise bipartite graph is beneficial for enhancing diagnostic performance. However, there are still limitations in their studies. On one hand, researchers overlook the heterogeneity within edges, where there can be both correct and incorrect answers. On the other hand, they disregard the uncertainty within edges, e.g., a correct answer can indicate true mastery or fortunate guessing. To address the limitations, we propose Adaptive Semantic-aware Graph-based Cognitive Diagnosis model (ASG-CD), which introduces a novel and effective way to leverage bipartite graph information in CD. Specifically, we first map students, exercises, and knowledge concepts into a latent representation space and combine these latent representations to obtain student abilities and exercise difficulties. After that, we propose a Semantic-aware Graph Neural Network Layer to address edge heterogeneity. This layer splits the original bipartite graph into two subgraphs according to edge semantics, and aggregates information based on these two subgraphs separately. To mitigate the impact of edge uncertainties, we propose an Adaptive Edge Differentiation Layer that dynamically differentiates edges, followed by keeping reliable edges and filtering out uncertain edges. Extensive experiments on three real-world datasets have demonstrated the effectiveness of ASG-CD.
Related papers
- Rethinking Dimensional Rationale in Graph Contrastive Learning from Causal Perspective [15.162584339143239]
Graph contrastive learning is a general learning paradigm excelling at capturing invariant information from diverse perturbations in graphs.
Recent works focus on exploring the structural rationale from graphs, thereby increasing the discriminability of the invariant information.
We propose the dimensional rationale-aware graph contrastive learning approach, which introduces a learnable dimensional rationale acquiring network and a redundancy reduction constraint.
arXiv Detail & Related papers (2023-12-16T10:05:18Z) - Implicit Graph Neural Diffusion Networks: Convergence, Generalization,
and Over-Smoothing [7.984586585987328]
Implicit Graph Neural Networks (GNNs) have achieved significant success in addressing graph learning problems.
We introduce a geometric framework for designing implicit graph diffusion layers based on a parameterized graph Laplacian operator.
We show how implicit GNN layers can be viewed as the fixed-point equation of a Dirichlet energy minimization problem.
arXiv Detail & Related papers (2023-08-07T05:22:33Z) - Interpretable Sparsification of Brain Graphs: Better Practices and
Effective Designs for Graph Neural Networks [15.101250958437038]
dense brain graphs pose computational challenges including high runtime and memory usage and limited interpretability.
We propose a new model, Interpretable Graph Sparsification, which enhances graph classification performance by up to 5.1% with 55.0% fewer edges.
arXiv Detail & Related papers (2023-06-26T01:37:10Z) - Compressing Deep Graph Neural Networks via Adversarial Knowledge
Distillation [41.00398052556643]
We propose a novel Adversarial Knowledge Distillation framework for graph models named GraphAKD.
The discriminator distinguishes between teacher knowledge and what the student inherits, while the student GNN works as a generator and aims to fool the discriminator.
The results imply that GraphAKD can precisely transfer knowledge from a complicated teacher GNN to a compact student GNN.
arXiv Detail & Related papers (2022-05-24T00:04:43Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - Learning Graphs from Smooth Signals under Moment Uncertainty [23.868075779606425]
We consider the problem of inferring the graph structure from a given set of graph signals.
Traditional graph learning models do not take this distributional uncertainty into account.
arXiv Detail & Related papers (2021-05-12T06:47:34Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.