論文の概要: Is ChatGPT More Empathetic than Humans?
- arxiv url: http://arxiv.org/abs/2403.05572v1
- Date: Thu, 22 Feb 2024 09:52:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:27:08.991364
- Title: Is ChatGPT More Empathetic than Humans?
- Title(参考訳): ChatGPTは人間よりも共感的か?
- Authors: Anuradha Welivita, Pearl Pu,
- Abstract要約: 我々は、人間とChatGPTが生み出す反応に対する共感のレベルを評価するために厳密な評価手法を用いる。
以上の結果から,ChatGPTが生成した反応の平均共感率は,ヒトが生成した反応よりも約10%高いことが示唆された。
ChatGPTに、その反応に共感の明確な理解を組み込むことを指示すると、反応は、高い共感の度合いを持つ個人の期待にほぼ5倍の精度で一致する。
- 参考スコア(独自算出の注目度): 14.18033127602866
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper investigates the empathetic responding capabilities of ChatGPT, particularly its latest iteration, GPT-4, in comparison to human-generated responses to a wide range of emotional scenarios, both positive and negative. We employ a rigorous evaluation methodology, involving a between-groups study with 600 participants, to evaluate the level of empathy in responses generated by humans and ChatGPT. ChatGPT is prompted in two distinct ways: a standard approach and one explicitly detailing empathy's cognitive, affective, and compassionate counterparts. Our findings indicate that the average empathy rating of responses generated by ChatGPT exceeds those crafted by humans by approximately 10%. Additionally, instructing ChatGPT to incorporate a clear understanding of empathy in its responses makes the responses align approximately 5 times more closely with the expectations of individuals possessing a high degree of empathy, compared to human responses. The proposed evaluation framework serves as a scalable and adaptable framework to assess the empathetic capabilities of newer and updated versions of large language models, eliminating the need to replicate the current study's results in future research.
- Abstract(参考訳): 本稿では,ChatGPTの共感応答能力,特に最新の反復であるGPT-4について,肯定的・否定的な幅広い情動シナリオに対する人為的反応と比較して検討する。
ヒトとChatGPTの反応に対する共感のレベルを評価するために,600人の参加者によるグループ間研究を含む厳密な評価手法を採用した。
ChatGPTは、標準的なアプローチと、共感の認知的、感情的、思いやりのある相手を明確に詳述するアプローチの2つの異なる方法によって引き起こされる。
以上の結果から,ChatGPTが生成した反応の平均共感率は,ヒトが生成した反応よりも約10%高いことが示唆された。
さらに、ChatGPTに、その反応に共感の明確な理解を組み込むよう指示すると、反応は人間の反応と比較して、高い共感を持っている個人の期待にほぼ5倍の精度で一致する。
提案した評価フレームワークは,大規模言語モデルの新たなバージョンと更新バージョンの共感能力を評価するための,スケーラブルで適応可能なフレームワークとして機能する。
関連論文リスト
- Are Large Language Models More Empathetic than Humans? [14.18033127602866]
GPT-4は最も共感的な反応として現れ、人間のベンチマークに比べて約31%の反応が「Good」と評価された。
一部のLSMは、特定の感情に反応するのが他よりもはるかに優れている。
論文 参考訳(メタデータ) (2024-06-07T16:33:43Z) - Exploring ChatGPT's Empathic Abilities [0.138120109831448]
本研究は, GPT-3.5に基づくChatGPTが情緒的反応および情緒的表情を示す程度について検討した。
91.7%の症例では、ChatGPTは感情を正しく識別し、適切な回答を得られる。
会話では、ChatGPTは70.7%のケースで平行感情で反応した。
論文 参考訳(メタデータ) (2023-08-07T12:23:07Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
本研究は,ChatGPT検出における最新の手法を包括的かつ現代的に評価するものである。
我々は、ChatGPTと人間からのプロンプトからなるベンチマークデータセットをキュレートし、医療、オープンQ&A、ファイナンスドメインからの多様な質問を含む。
評価の結果,既存の手法ではChatGPT生成内容を効果的に検出できないことがわかった。
論文 参考訳(メタデータ) (2023-04-04T03:04:28Z) - ChatGPT: Jack of all trades, master of none [4.693597927153063]
OpenAIはChat Generative Pre-trained Transformer (ChatGPT)をリリースした。
25種類のNLPタスクにおけるChatGPTの機能について検討した。
われわれはChatGPTとGPT-4のプロンプト処理を自動化し,49k以上の応答を解析した。
論文 参考訳(メタデータ) (2023-02-21T15:20:37Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
チャットGPTは、人間の質問に対する流動的で高品質な応答を生成できるため、大きな注目を集めている。
そこで我々は,ChatGPTの理解能力を,最も人気のあるGLUEベンチマークで評価し,より詳細な4種類のBERTスタイルのモデルと比較した。
2)ChatGPTは,感情分析や質問応答タスクにおいて,BERTと同等のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-02-19T12:29:33Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z) - EmpBot: A T5-based Empathetic Chatbot focusing on Sentiments [75.11753644302385]
共感的会話エージェントは、議論されていることを理解しているだけでなく、会話相手の暗黙の感情も認識すべきである。
変圧器事前学習言語モデル(T5)に基づく手法を提案する。
本研究では,自動計測と人的評価の両方を用いて,情緒的ダイアログデータセットを用いたモデルの評価を行った。
論文 参考訳(メタデータ) (2021-10-30T19:04:48Z) - CEM: Commonsense-aware Empathetic Response Generation [31.956147246779423]
本稿では,ユーザ状況に関する情報を引き出すために,コモンセンスを利用した共感応答生成手法を提案する。
我々は,共感的応答生成のためのベンチマークデータセットである共感的ダイアログに対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-09-13T06:55:14Z) - Exemplars-guided Empathetic Response Generation Controlled by the
Elements of Human Communication [88.52901763928045]
そこで本稿では, インターロケータへの共感を伝達する, 造形モデルによる細かな構造的特性の解明に先立って, 模範的手法を提案する。
これらの手法は, 自動評価指標と人的評価指標の両方の観点から, 共感的応答品質の大幅な改善をもたらすことを実証的に示す。
論文 参考訳(メタデータ) (2021-06-22T14:02:33Z) - Towards Persona-Based Empathetic Conversational Models [58.65492299237112]
共感的会話モデルは、多くのドメインにおけるユーザの満足度とタスク結果を改善することが示されている。
心理学において、ペルソナは人格と高い相関関係があることが示され、それによって共感に影響を及ぼす。
本研究では,ペルソナに基づく共感的会話に対する新たな課題を提案し,ペルソナが共感的反応に与える影響に関する最初の経験的研究を示す。
論文 参考訳(メタデータ) (2020-04-26T08:51:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。