論文の概要: Decoding the AI Pen: Techniques and Challenges in Detecting AI-Generated
Text
- arxiv url: http://arxiv.org/abs/2403.05750v1
- Date: Sat, 9 Mar 2024 01:13:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 12:42:18.135498
- Title: Decoding the AI Pen: Techniques and Challenges in Detecting AI-Generated
Text
- Title(参考訳): AI Penのデコード:AI生成テキストの検出技術と課題
- Authors: Sara Abdali, Richard Anarfi, CJ Barberan, Jia He
- Abstract要約: 大規模言語モデル(LLM)は、人間に似たテキストを生成する素晴らしい能力を示すことによって、自然言語生成(NLG)の分野に革命をもたらした。
しかし、彼らの普及した利用は、思慮深い検査、倫理的精査、責任ある実践を必要とする課題をもたらす。
- 参考スコア(独自算出の注目度): 5.383228101243665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have revolutionized the field of Natural
Language Generation (NLG) by demonstrating an impressive ability to generate
human-like text. However, their widespread usage introduces challenges that
necessitate thoughtful examination, ethical scrutiny, and responsible
practices. In this study, we delve into these challenges, explore existing
strategies for mitigating them, with a particular emphasis on identifying
AI-generated text as the ultimate solution. Additionally, we assess the
feasibility of detection from a theoretical perspective and propose novel
research directions to address the current limitations in this domain.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人間に似たテキストを生成する素晴らしい能力を示すことによって、自然言語生成(NLG)の分野に革命をもたらした。
しかし、その広範な使用は、思慮深い検査、倫理的な精査、責任ある実践を必要とする課題をもたらす。
本研究では,これらの課題を考察し,aiが生成するテキストを究極のソリューションとして識別することに注目しながら,それらの緩和のための既存の戦略を検討する。
さらに, 理論的な観点から検出の可能性を評価し, この領域における現在の限界に対処するための新しい研究方向を提案する。
関連論文リスト
- Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods [13.14749943120523]
テキストが人工知能(AI)によって作成されたかどうかを知ることは、その信頼性を決定する上で重要である。
AIGT検出に対する最先端のアプローチには、透かし、統計学的およびスタイリスティック分析、機械学習分類などがある。
AIGTテキストがどのようなシナリオで「検出可能」であるかを判断するために、結合する健全な要因についての洞察を提供することを目指している。
論文 参考訳(メタデータ) (2024-06-21T18:31:49Z) - Enhancing Text Authenticity: A Novel Hybrid Approach for AI-Generated Text Detection [8.149808049643344]
本稿では,TF-IDF技術と高度な機械学習モデルを組み合わせた新しいハイブリッド手法を提案する。
提案手法は既存手法と比較して優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-06-01T10:21:54Z) - Who Writes the Review, Human or AI? [0.36498648388765503]
本研究では,AIによる書評と人間による書評を正確に区別する手法を提案する。
提案手法は移動学習を利用して,異なるトピック間で生成したテキストを識別する。
実験の結果、元のテキストのソースを検出でき、精度96.86%に達することが示されている。
論文 参考訳(メタデータ) (2024-05-30T17:38:44Z) - A Survey of AI-generated Text Forensic Systems: Detection, Attribution,
and Characterization [13.44566185792894]
AI生成テキスト鑑定は、LLMの誤用に対処する新たな分野である。
本稿では,検出,帰属,特性の3つの主要な柱に着目した詳細な分類法を紹介する。
我々は、AI生成テキスト法医学研究の利用可能なリソースを探究し、AI時代の法医学システムの進化的課題と今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-03-02T09:39:13Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
現在の大規模生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの基本的な問題に十分対応していない、と我々は主張する。
本研究は、現代の生成型AIパラダイムにおける重要な未解決課題を特定し、その能力、汎用性、信頼性をさらに向上するために取り組まなければならない。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
先進的なLarge Language Models (LLMs) とその特殊な変種を探索し、いくつかの方法でこの分野に寄与する。
トピックと検出性能の間に有意な相関関係が発見された。
これらの調査は、様々なトピックにまたがるこれらの検出手法の適応性と堅牢性に光を当てた。
論文 参考訳(メタデータ) (2023-12-20T10:53:53Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - Watermarking Conditional Text Generation for AI Detection: Unveiling
Challenges and a Semantic-Aware Watermark Remedy [52.765898203824975]
本研究では,条件付きテキスト生成と入力コンテキストの特性を考慮した意味認識型透かしアルゴリズムを提案する。
実験結果から,提案手法は様々なテキスト生成モデルに対して大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2023-07-25T20:24:22Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。