Low-Rank Variational Quantum Algorithm for the Dynamics of Open Quantum
Systems
- URL: http://arxiv.org/abs/2403.05908v1
- Date: Sat, 9 Mar 2024 13:23:14 GMT
- Title: Low-Rank Variational Quantum Algorithm for the Dynamics of Open Quantum
Systems
- Authors: Sara Santos, Xinyu Song and Vincenzo Savona
- Abstract summary: A variational quantum algorithm is developed to simulate the real-time evolution of the density matrix governed by the Lindblad master equation.
The algorithm encodes each pure state of the statistical mixture as a parametrized quantum circuit.
Two variational Ans"atze are proposed, and their effectiveness is assessed in the simulation of the dynamics of a 2D dissipative transverse field Ising model.
- Score: 0.5755004576310334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The simulation of many-body open quantum systems is key to solving numerous
outstanding problems in physics, chemistry, material science, and in the
development of quantum technologies. Near-term quantum computers may bring
considerable advantage for the efficient simulation of their static and
dynamical properties, thanks to hybrid quantum-classical variational algorithms
to approximate the dynamics of the density matrix describing the quantum state
in terms of an ensemble average. Here, a variational quantum algorithm is
developed to simulate the real-time evolution of the density matrix governed by
the Lindblad master equation, under the assumption that the quantum state has a
bounded entropy along the dynamics, entailing a low-rank representation of its
density matrix. The algorithm encodes each pure state of the statistical
mixture as a parametrized quantum circuit, and the associated probabilities as
additional variational parameters stored classically, thereby requiring a
significantly lower number of qubits than algorithms where the full density
matrix is encoded in the quantum memory. Two variational Ans\"atze are
proposed, and their effectiveness is assessed in the simulation of the dynamics
of a 2D dissipative transverse field Ising model. The results underscore the
algorithm's efficiency in simulating the dynamics of open quantum systems in
the low-rank regime with limited quantum resources on a near-term quantum
device.
Related papers
- An Efficient Classical Algorithm for Simulating Short Time 2D Quantum Dynamics [2.891413712995642]
We introduce an efficient classical algorithm for simulating short-time dynamics in 2D quantum systems.
Our results reveal the inherent simplicity in the complexity of short-time 2D quantum dynamics.
This work advances our understanding of the boundary between classical and quantum computation.
arXiv Detail & Related papers (2024-09-06T09:59:12Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Simulation of open quantum systems on universal quantum computers [15.876768787615179]
We present an innovative and scalable method to simulate open quantum systems using quantum computers.
We define an adjoint density matrix as a counterpart of the true density matrix, which reduces to a mixed-unitary quantum channel.
accurate long-time simulation can also be achieved as the adjoint density matrix and the true dissipated one converges to the same state.
arXiv Detail & Related papers (2024-05-31T09:07:27Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - Variational Quantum Algorithms for Simulation of Lindblad Dynamics [0.0]
We introduce a variational hybrid classical-quantum algorithm to simulate the Lindblad master equation and its adjoint for time-evolving Markovian open quantum systems and quantum observables.
We design and optimize low-depth variational quantum circuits that efficiently capture the unitary and non-unitary dynamics of the solutions.
arXiv Detail & Related papers (2023-05-04T13:25:44Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Resource-efficient encoding algorithm for variational bosonic quantum
simulations [0.0]
In the Noisy Intermediate Scale Quantum (NISQ) era of quantum computing, quantum resources are limited.
We present a resource-efficient quantum algorithm for bosonic ground and excited state computations.
arXiv Detail & Related papers (2021-02-23T19:00:05Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.