Wavelet-Like Transform-Based Technology in Response to the Call for
Proposals on Neural Network-Based Image Coding
- URL: http://arxiv.org/abs/2403.05937v1
- Date: Sat, 9 Mar 2024 15:13:49 GMT
- Title: Wavelet-Like Transform-Based Technology in Response to the Call for
Proposals on Neural Network-Based Image Coding
- Authors: Cunhui Dong, Haichuan Ma, Haotian Zhang, Changsheng Gao, Li Li, Dong
Liu
- Abstract summary: This paper introduces a novel wavelet-like transform-based end-to-end image coding framework -- iWaveV3.
iWaveV3 incorporates many new features such as affine wavelet-like transform, perceptual-friendly quality metric, and more advanced training and online optimization strategies.
iWaveV3 is adopted as a candidate scheme for developing the IEEE Standard for neural-network-based image coding.
- Score: 18.1150260268062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network-based image coding has been developing rapidly since its
birth. Until 2022, its performance has surpassed that of the best-performing
traditional image coding framework -- H.266/VVC. Witnessing such success, the
IEEE 1857.11 working subgroup initializes a neural network-based image coding
standard project and issues a corresponding call for proposals (CfP). In
response to the CfP, this paper introduces a novel wavelet-like transform-based
end-to-end image coding framework -- iWaveV3. iWaveV3 incorporates many new
features such as affine wavelet-like transform, perceptual-friendly quality
metric, and more advanced training and online optimization strategies into our
previous wavelet-like transform-based framework iWave++. While preserving the
features of supporting lossy and lossless compression simultaneously, iWaveV3
also achieves state-of-the-art compression efficiency for objective quality and
is very competitive for perceptual quality. As a result, iWaveV3 is adopted as
a candidate scheme for developing the IEEE Standard for neural-network-based
image coding.
Related papers
- CWT-Net: Super-resolution of Histopathology Images Using a Cross-scale Wavelet-based Transformer [15.930878163092983]
Super-resolution (SR) aims to enhance the quality of low-resolution images and has been widely applied in medical imaging.
We propose a novel network called CWT-Net, which leverages cross-scale image wavelet transform and Transformer architecture.
Our model significantly outperforms state-of-the-art methods in both performance and visualization evaluations.
arXiv Detail & Related papers (2024-09-11T08:26:28Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
This paper focuses on the task of quality enhancement for compressed videos.
Most of the existing methods lack a structured design to optimally leverage the priors within compression codecs.
A new paradigm is urgently needed for a more conscious'' process of quality enhancement.
arXiv Detail & Related papers (2024-05-10T09:18:17Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
We introduce a novel neural rendering technique to solve image-to-3D from a single view.
Our approach employs the signed distance function as the surface representation and incorporates generalizable priors through geometry-encoding volumes and HyperNetworks.
Our experiments show the advantages of our proposed approach with consistent results and rapid generation.
arXiv Detail & Related papers (2023-12-24T08:42:37Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Frequency Disentangled Features in Neural Image Compression [13.016298207860974]
A neural image compression network is governed by how well the entropy model matches the true distribution of the latent code.
In this paper, we propose a feature-level frequency disentanglement to help the relaxed scalar quantization achieve lower bit rates.
The proposed network not only outperforms hand-engineered codecs, but also neural network-based codecs built on-heavy spatially autoregressive entropy models.
arXiv Detail & Related papers (2023-08-04T14:55:44Z) - D3C2-Net: Dual-Domain Deep Convolutional Coding Network for Compressive
Sensing [9.014593915305069]
Deep unfolding networks (DUNs) have achieved impressive success in compressive sensing (CS)
By unfolding the proposed framework into deep neural networks, we further design a novel Dual-Domain Deep Convolutional Coding Network (D3C2-Net)
Experiments on natural and MR images demonstrate that our D3C2-Net achieves higher performance and better accuracy-complexity trade-offs than other state-of-the-arts.
arXiv Detail & Related papers (2022-07-27T14:52:32Z) - aiWave: Volumetric Image Compression with 3-D Trained Affine
Wavelet-like Transform [43.984890290691695]
Most commonly used volumetric image compression methods are based on wavelet transform, such as JP3D.
In this paper, we first design a 3-D trained wavelet-like transform to enable signal-dependent and non-separable transform.
Then, an affine wavelet basis is introduced to capture the various local correlations in different regions of volumetric images.
arXiv Detail & Related papers (2022-03-11T10:02:01Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - Spatially-Adaptive Pixelwise Networks for Fast Image Translation [57.359250882770525]
We introduce a new generator architecture, aimed at fast and efficient high-resolution image-to-image translation.
We use pixel-wise networks; that is, each pixel is processed independently of others.
Our model is up to 18x faster than state-of-the-art baselines.
arXiv Detail & Related papers (2020-12-05T10:02:03Z) - Online Exemplar Fine-Tuning for Image-to-Image Translation [32.556050882376965]
Existing techniques to solve exemplar-based image-to-image translation within deep convolutional neural networks (CNNs) generally require a training phase to optimize the network parameters.
We propose a novel framework, for the first time, to solve exemplar-based translation through an online optimization given an input image pair.
Our framework does not require the off-line training phase, which has been the main challenge of existing methods, but the pre-trained networks to enable optimization in online.
arXiv Detail & Related papers (2020-11-18T15:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.