Multimodal deep learning approach to predicting neurological recovery
from coma after cardiac arrest
- URL: http://arxiv.org/abs/2403.06027v1
- Date: Sat, 9 Mar 2024 22:29:24 GMT
- Title: Multimodal deep learning approach to predicting neurological recovery
from coma after cardiac arrest
- Authors: Felix H. Krones, Ben Walker, Guy Parsons, Terry Lyons, Adam Mahdi
- Abstract summary: The aim was to predict neurological recovery from coma following cardiac arrest using clinical data and time-series such as multi-channel EEG and ECG signals.
Our submitted model achieved a Challenge score of $0.53$ on a hidden test set for predictions made $72$ hours after return of spontaneous circulation.
- Score: 2.374912052693646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work showcases our team's (The BEEGees) contributions to the 2023 George
B. Moody PhysioNet Challenge. The aim was to predict neurological recovery from
coma following cardiac arrest using clinical data and time-series such as
multi-channel EEG and ECG signals. Our modelling approach is multimodal, based
on two-dimensional spectrogram representations derived from numerous EEG
channels, alongside the integration of clinical data and features extracted
directly from EEG recordings. Our submitted model achieved a Challenge score of
$0.53$ on the hidden test set for predictions made $72$ hours after return of
spontaneous circulation. Our study shows the efficacy and limitations of
employing transfer learning in medical classification. With regard to
prospective implementation, our analysis reveals that the performance of the
model is strongly linked to the selection of a decision threshold and exhibits
strong variability across data splits.
Related papers
- CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis [46.56667527672019]
We introduce a Cross-Modal Temporal Pattern Discovery (CTPD) framework, designed to efficiently extract meaningful cross-modal temporal patterns from multimodal EHR data.
Our approach introduces shared initial temporal pattern representations which are refined using slot attention to generate temporal semantic embeddings.
arXiv Detail & Related papers (2024-11-01T15:54:07Z) - MambaCapsule: Towards Transparent Cardiac Disease Diagnosis with Electrocardiography Using Mamba Capsule Network [16.562266471455672]
This paper introduces MambaCapsule, a deep neural networks for ECG arrhythmias classification.
MambaCapsule has achieved a total accuracy of 99.54% and 99.59% on the test sets respectively.
arXiv Detail & Related papers (2024-07-30T15:12:29Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Joint optimization of a $\beta$-VAE for ECG task-specific feature
extraction [1.3124513975412255]
We study the use of $beta$-variational autoencoders (VAEs) as an explainable feature extractor.
We improve on its predictive capacities by jointly optimizing signal reconstruction and cardiac function prediction.
arXiv Detail & Related papers (2023-03-28T12:53:07Z) - MP-SeizNet: A Multi-Path CNN Bi-LSTM Network for Seizure-Type
Classification Using EEG [2.1915057426589746]
Seizure type identification is essential for the treatment and management of epileptic patients.
We present a novel multi-path seizure-type classification deep learning network (MP-SeizNet)
MP-SeizNet consists of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism.
arXiv Detail & Related papers (2022-11-09T01:07:20Z) - EEG-Based Epileptic Seizure Prediction Using Temporal Multi-Channel
Transformers [1.0970480513577103]
Epilepsy is one of the most common neurological diseases, characterized by transient and unprovoked events called epileptic seizures.
EEG is an auxiliary method used to perform both the diagnosis and the monitoring of epilepsy.
Given the unexpected nature of an epileptic seizure, its prediction would improve patient care, optimizing the quality of life and the treatment of epilepsy.
arXiv Detail & Related papers (2022-09-18T03:03:47Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - An Ensemble Approach for Patient Prognosis of Head and Neck Tumor Using
Multimodal Data [0.0]
We propose a multimodal network that ensembles deep multi-task logistic regression (MTLR), Cox proportional hazard (CoxPH) and CNN models to predict prognostic outcomes for patients with head and neck tumors.
Our proposed ensemble solution achieves a C-index of 0.72 on The HECKTOR test set that saved us the first place in prognosis task of the HECKTOR challenge.
arXiv Detail & Related papers (2022-02-25T07:50:59Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.