論文の概要: Universal Debiased Editing on Foundation Models for Fair Medical Image Classification
- arxiv url: http://arxiv.org/abs/2403.06104v2
- Date: Sat, 16 Mar 2024 07:34:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 01:21:18.030548
- Title: Universal Debiased Editing on Foundation Models for Fair Medical Image Classification
- Title(参考訳): 公平な医用画像分類のための基礎モデルに基づくユニバーサルデバイアス編集
- Authors: Ruinan Jin, Wenlong Deng, Minghui Chen, Xiaoxiao Li,
- Abstract要約: 本研究では,Foundation Models (FM) API を用いた医療画像のバイアス問題に対処する。
そこで本研究では,UDEノイズを発生させるU(niversal)D(ebiased)E(diting)戦略を提案する。
われわれのパイプライン全体は、様々な医療状況にまたがって適用可能な公平な画像編集を可能にする。
- 参考スコア(独自算出の注目度): 23.565972547333995
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the era of Foundation Models' (FMs) rising prominence in AI, our study addresses the challenge of biases in medical images while using FM API, particularly spurious correlations between pixels and sensitive attributes. Traditional methods for bias mitigation face limitations due to the restricted access to web-hosted FMs and difficulties in addressing the underlying bias encoded within the FM API. We propose an U(niversal) D(ebiased) E(diting) strategy, termed UDE, which generates UDE noise to mask such spurious correlation. UDE is capable of mitigating bias both within the FM API embedding and the images themselves. Furthermore, UDE is suitable for both white-box and black-box FM APIs, where we introduced G(reedy) (Z)eroth-O(rder) (GeZO) optimization for it when the gradient is inaccessible in black-box APIs. Our whole pipeline enables fairness-aware image editing that can be applied across various medical contexts without requiring direct model manipulation or significant computational resources. Our empirical results demonstrate the method's effectiveness in maintaining fairness and utility across different patient groups and diseases. In the era of AI-driven medicine, this work contributes to making healthcare diagnostics more equitable, showcasing a practical solution for bias mitigation in pre-trained image FMs.
- Abstract(参考訳): ファンデーションモデル(FM)がAIで優位に立つ時代において,この研究では,FM APIを用いた医療画像の偏り,特に画素と感度属性の急激な相関について論じる。
従来のバイアス緩和手法は、WebホストされたFMへのアクセスが制限されていることと、FM APIで符号化された基盤となるバイアスに対処することの難しさにより、制限に直面している。
そこで本研究では,UDEノイズを発生させるU(niversal)D(ebiased)E(diting)戦略を提案する。
UDEはFM APIの埋め込みとイメージ自体のバイアスを軽減することができる。
さらに、UDEはホワイトボックスとブラックボックスのFM APIに適しており、ブラックボックスAPIでは勾配がアクセスできない場合にG(reedy) (Z)eroth-O(rder) (GeZO) の最適化を導入しました。
我々のパイプライン全体は、直接モデル操作や重要な計算資源を必要とせずに、様々な医療状況にまたがって適用可能な公平性に配慮した画像編集を可能にする。
本手法の有効性を実証し, 患者集団, 疾患間の公平性, 有用性について検討した。
AI駆動医療の時代において、この研究は医療診断をより公平にし、事前訓練された画像FMにおけるバイアス軽減の実践的な解決策を示す。
関連論文リスト
- Counterfactual MRI Data Augmentation using Conditional Denoising Diffusion Generative Models [0.0]
医用画像の深層学習モデルにおける画像取得パラメータ(IAP)の変動による一般化性とロバスト性の問題
患者解剖を変更せずに異なるIAPをシミュレートするMR画像を生成するために, 条件付き縮退拡散生成モデル(cDDGM)を用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T11:29:41Z) - Cross-conditioned Diffusion Model for Medical Image to Image Translation [22.020931436223204]
医用画像から画像への変換のためのクロスコンディショニング拡散モデル(CDM)を提案する。
まず、目的のモダリティの分布をモデル化するためのモダリティ固有表現モデル(MRM)を提案する。
そして、MDN(Modality-Decoupled Diffusion Network)を設計し、MRMから効率よく効果的に分布を学習する。
論文 参考訳(メタデータ) (2024-09-13T02:48:56Z) - BAPLe: Backdoor Attacks on Medical Foundational Models using Prompt Learning [71.60858267608306]
医療基盤モデルはバックドア攻撃の影響を受けやすい。
本研究は,素早い学習期間中に医療基盤モデルにバックドアを埋め込む方法を紹介する。
我々の手法であるBAPLeは、ノイズトリガを調整するために最小限のデータサブセットしか必要とせず、テキストは下流のタスクにプロンプトする。
論文 参考訳(メタデータ) (2024-08-14T10:18:42Z) - FairMedFM: Fairness Benchmarking for Medical Imaging Foundation Models [37.803490266325]
医療画像における基礎モデル(FM)研究のためのフェアネスベンチマークであるFairMedFMを紹介する。
FairMedFMは17の一般的な医療画像データセットと統合されており、様々なモダリティ、次元、機密属性を含んでいる。
ゼロショット学習、線形探索、パラメータ効率のよい微調整、様々な下流タスク、分類とセグメンテーションなど、広く使われている20のFMを探索する。
論文 参考訳(メタデータ) (2024-07-01T05:47:58Z) - Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data [56.81246107125692]
Ambient Diffusion Posterior Smpling (A-DPS) は、ある種類の腐敗に対して事前訓練された生成モデルである。
A-DPSは、いくつかの画像復元タスクにおいて、クリーンなデータで訓練されたモデルよりも、速度と性能の両方で優れていることが示される。
我々はAmbient Diffusionフレームワークを拡張して、FourierサブサンプルのマルチコイルMRI測定にのみアクセスしてMRIモデルをトレーニングする。
論文 参考訳(メタデータ) (2024-03-13T17:28:20Z) - Denoising Diffusion Bridge Models [54.87947768074036]
拡散モデルは、プロセスを使用してデータにノイズをマッピングする強力な生成モデルである。
画像編集のような多くのアプリケーションでは、モデル入力はランダムノイズではない分布から来る。
本研究では, DDBM(Denoising Diffusion Bridge Models)を提案する。
論文 参考訳(メタデータ) (2023-09-29T03:24:24Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
本稿では,従来のプラグアンドプレイ方式を拡散サンプリングフレームワークに統合したDiffPIRを提案する。
DiffPIRは、差別的なガウスのデノイザーに依存するプラグアンドプレイIR法と比較して、拡散モデルの生成能力を継承することが期待されている。
論文 参考訳(メタデータ) (2023-05-15T20:24:38Z) - DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion [144.9653045465908]
拡散確率モデル(DDPM)に基づく新しい融合アルゴリズムを提案する。
近赤外可視画像融合と医用画像融合で有望な融合が得られた。
論文 参考訳(メタデータ) (2023-03-13T04:06:42Z) - Multitask Brain Tumor Inpainting with Diffusion Models: A Methodological
Report [0.0]
インペイントアルゴリズムは、入力画像の1つ以上の領域を変更することができるDL生成モデルのサブセットである。
これらのアルゴリズムの性能は、その限られた出力量のために、しばしば準最適である。
拡散確率モデル(DDPM)は、GANに匹敵する品質の結果を生成することができる、最近導入された生成ネットワークのファミリーである。
論文 参考訳(メタデータ) (2022-10-21T17:13:14Z) - MEDFAIR: Benchmarking Fairness for Medical Imaging [44.73351338165214]
MEDFAIRは、医療画像のための機械学習モデルの公正性をベンチマークするフレームワークである。
モデル選択基準の未検討の問題は、公正な結果に重大な影響を及ぼす可能性がある。
異なる倫理的原則を必要とするさまざまな医療応用シナリオを推奨する。
論文 参考訳(メタデータ) (2022-10-04T16:30:47Z) - FedMed-ATL: Misaligned Unpaired Brain Image Synthesis via Affine
Transform Loss [58.58979566599889]
脳画像合成のための新しい自己教師型学習(FedMed)を提案する。
アフィン変換損失(ATL)は、プライバシー法に違反することなく、ひどく歪んだ画像を使用するように定式化された。
提案手法は, 極めて不整合かつ不整合なデータ設定下での合成結果の品質の両方において, 高度な性能を示す。
論文 参考訳(メタデータ) (2022-01-29T13:45:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。