論文の概要: Simulating Family Conversations using LLMs: Demonstration of Parenting
Styles
- arxiv url: http://arxiv.org/abs/2403.06144v1
- Date: Sun, 10 Mar 2024 09:18:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 07:28:15.859655
- Title: Simulating Family Conversations using LLMs: Demonstration of Parenting
Styles
- Title(参考訳): LLMを用いた家族会話のシミュレーション:育児スタイルの実証
- Authors: Frank Tian-fang Ye (1), Xiaozi Gao (2) ((1) Department of Applied
Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, (2)
Department of Early Childhood Education, The Education University of Hong
Kong, Hong Kong SAR)
- Abstract要約: 本研究では,大規模言語モデル(LLM)を用いた模擬会話を通して,心理学的・言語的な研究を行うための枠組みを提案する。
提案手法は、特に潜在的な非倫理的言語や行動を含む人間の相互作用をシミュレートする上で、大きな利点を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a framework for conducting psychological and linguistic
research through simulated conversations using large language models (LLMs).
The proposed methodology offers significant advantages, particularly for
simulating human interactions involving potential unethical language or
behaviors that would be impermissible in traditional experiments with human
participants. As a demonstration, we employed LLMs to simulate family
conversations across four parenting styles (authoritarian, authoritative,
permissive, and uninvolved). In general, we observed that the characteristics
of the four parenting styles were portrayed in the simulated conversations.
Several strategies could be used to improve the simulation quality, such as
including context awareness, employing a few-shot prompting approach or
fine-tuning models to cater to specific simulation requirements. Overall, this
study introduces a promising methodology for conducting psychological and
linguistic research through simulated conversations, while acknowledging the
current limitations and proposing potential solutions for future refinement and
improvement.
- Abstract(参考訳): 本研究では,大規模言語モデル(llm)を用いた模擬会話による心理・言語研究の枠組みを提案する。
提案手法は,人間との伝統的な実験では不可能になる可能性のある非倫理的言語や行動を含む人間のインタラクションをシミュレートする上で,特に大きな利点を提供する。
実演として,4つの育児スタイル(権威主義,権威,寛容,無関係)の家族会話をシミュレートするためにLLMを用いた。
一般に,シミュレートされた会話では,4つの育児スタイルの特徴が描かれていた。
例えば、コンテキスト認識、数ショットプロンプトアプローチの採用、特定のシミュレーション要件に対応するための微調整モデルなどだ。
本研究は,会話の模擬を通して心理学的・言語的な研究を行うための有望な方法論を紹介し,現状の限界を認識し,今後の改善と改善に向けた潜在的解決策を提案する。
関連論文リスト
- PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Human Simulacra: Benchmarking the Personification of Large Language Models [38.21708264569801]
大規模言語モデル(LLM)は、人間の知性の側面を忠実に模倣するシステムとして認識されている。
本稿では,仮想キャラクタのライフストーリーをゼロから構築するためのフレームワークを提案する。
実験により, 構築したシミュラクラは, 対象キャラクタと一致した擬人化応答を生成できることが実証された。
論文 参考訳(メタデータ) (2024-02-28T09:11:14Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
既存の作業は、複雑な推論タスクに対処し、人間のコミュニケーションを模倣する大規模言語モデルの能力を強調している。
そこで本研究では,LLMを用いて人工人体を合成し,サブリレーショナル・エージェント・ポリシーを学習する手法を提案する。
我々は,4つの単純なシナリオを通して,サブリレータリティをモデル化するフレームワークの能力について実験的に評価した。
論文 参考訳(メタデータ) (2024-02-13T19:46:39Z) - Large language models as linguistic simulators and cognitive models in human research [0.0]
人間のようなテキストを生成する大きな言語モデル(LLM)の台頭は、行動や認知研究における人間の参加者を置き換える可能性についての議論を巻き起こした。
心理学・社会科学における言語モデルの基本的有用性を評価するために,この代替視点を批判的に評価する。
この視点は、行動科学と認知科学における言語モデルの役割を再定義し、言語シミュレータや認知モデルとして機能し、マシンインテリジェンスと人間の認知と思考の類似点と相違点に光を当てている。
論文 参考訳(メタデータ) (2024-02-06T23:28:23Z) - CoMPosT: Characterizing and Evaluating Caricature in LLM Simulations [61.9212914612875]
本研究では,LLMシミュレーションを4次元(コンテキスト,モデル,ペルソナ,トピック)で特徴付けるフレームワークを提案する。
我々は,この枠組みを用いて,オープンエンドLLMシミュレーションのキャラクチュアへの感受性を測定する。
GPT-4では、特定の人口動態(政治的・疎外化グループ)と話題(一般には非論争的)のシミュレーションは、似顔絵に非常に敏感であることが判明した。
論文 参考訳(メタデータ) (2023-10-17T18:00:25Z) - Harnessing the Power of Large Language Models for Empathetic Response Generation: Empirical Investigations and Improvements [28.630542719519855]
本研究では,大規模言語モデル(LLM)の共感応答生成における性能について実験的に検討する。
大規模な実験により, LLMは提案手法の利点を大いに生かし, 自動評価と人的評価の両方で最先端の性能を達成できることが示されている。
論文 参考訳(メタデータ) (2023-10-08T12:21:24Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
LLMベースのエージェントフレームワークを提案し,実際のユーザ動作をシミュレートするサンドボックス環境を設計する。
実験結果から,本手法のシミュレーション行動は実人の行動に非常に近いことが判明した。
論文 参考訳(メタデータ) (2023-06-05T02:58:35Z) - BabySLM: language-acquisition-friendly benchmark of self-supervised
spoken language models [56.93604813379634]
音声表現を学習するための自己指導技術は、人間のラベルを必要とせずに、音声への露出から言語能力を高めることが示されている。
語彙および構文レベルで音声言語モデルを探索するために,言語習得に親しみやすいベンチマークを提案する。
テキストと音声のギャップを埋めることと、クリーンな音声とその内話のギャップを埋めることである。
論文 参考訳(メタデータ) (2023-06-02T12:54:38Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
近年の大規模言語モデル(LLM)の成功は、より強力な対話レコメンデーションシステム(CRS)を開発する大きな可能性を示している。
本稿では,ChatGPTの会話レコメンデーションへの活用について検討し,既存の評価プロトコルが不十分であることを明らかにする。
LLMをベースとしたユーザシミュレータを用いた対話型評価手法iEvaLMを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:12:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。