Editing Conceptual Knowledge for Large Language Models
- URL: http://arxiv.org/abs/2403.06259v1
- Date: Sun, 10 Mar 2024 16:57:10 GMT
- Title: Editing Conceptual Knowledge for Large Language Models
- Authors: Xiaohan Wang, Shengyu Mao, Ningyu Zhang, Shumin Deng, Yunzhi Yao, Yue
Shen, Lei Liang, Jinjie Gu, Huajun Chen
- Abstract summary: This paper pioneers the investigation of editing conceptual knowledge for Large Language Models (LLMs)
We construct a novel benchmark dataset ConceptEdit and establish a suite of new metrics for evaluation.
experimental results reveal that, although existing editing methods can efficiently modify concept-level definition to some extent, they also have the potential to distort the related instantial knowledge.
- Score: 67.8410749469755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been a growing interest in knowledge editing for Large
Language Models (LLMs). Current approaches and evaluations merely explore the
instance-level editing, while whether LLMs possess the capability to modify
concepts remains unclear. This paper pioneers the investigation of editing
conceptual knowledge for LLMs, by constructing a novel benchmark dataset
ConceptEdit and establishing a suite of new metrics for evaluation. The
experimental results reveal that, although existing editing methods can
efficiently modify concept-level definition to some extent, they also have the
potential to distort the related instantial knowledge in LLMs, leading to poor
performance. We anticipate this can inspire further progress in better
understanding LLMs. Our project homepage is available at
https://zjunlp.github.io/project/ConceptEdit.
Related papers
- How Well Can Knowledge Edit Methods Edit Perplexing Knowledge? [18.022428746019582]
This study investigates the capability of knowledge editing methods to incorporate new knowledge with varying degrees of "perplexingness"
We find significant negative correlations between the "perplexingness" of the new knowledge and the edit efficacy across all 12 scenarios.
Further exploration into the influence of knowledge hierarchy on editing outcomes indicates that knowledge positioned at higher hierarchical levels is more challenging to modify in some scenarios.
arXiv Detail & Related papers (2024-06-25T03:41:02Z) - Editing the Mind of Giants: An In-Depth Exploration of Pitfalls of Knowledge Editing in Large Language Models [26.516571783335824]
Recent studies have identified side effects, such as knowledge distortion and the deterioration of general abilities, that have emerged after editing.
This survey presents a comprehensive study of these side effects, providing a unified perspective on the challenges of knowledge editing in large language models.
arXiv Detail & Related papers (2024-06-03T15:28:21Z) - Knowledge Graph Enhanced Large Language Model Editing [37.6721061644483]
Large language models (LLMs) are pivotal in advancing natural language processing (NLP) tasks.
Existing editing methods struggle to track and incorporate changes in knowledge associated with edits.
We propose a novel model editing method that leverages knowledge graphs for enhancing LLM editing, namely GLAME.
arXiv Detail & Related papers (2024-02-21T07:52:26Z) - Learning to Edit: Aligning LLMs with Knowledge Editing [101.96620267293731]
We propose a Learning to Edit (LTE) framework, focusing on teaching large language models to apply updated knowledge into input questions.
LTE features a two-phase process: (i) the Alignment Phase, which fine-tunes LLMs on a meticulously curated parallel dataset to make reliable, in-scope edits.
We demonstrate LTE's superiority in knowledge editing performance, robustness in both batch and sequential editing, minimal interference on general tasks, and rapid editing speeds.
arXiv Detail & Related papers (2024-02-19T07:45:17Z) - See the Unseen: Better Context-Consistent Knowledge-Editing by Noises [73.54237379082795]
Knowledge-editing updates knowledge of large language models (LLMs)
Existing works ignore this property and the editing lacks generalization.
We empirically find that the effects of different contexts upon LLMs in recalling the same knowledge follow a Gaussian-like distribution.
arXiv Detail & Related papers (2024-01-15T09:09:14Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z) - Unveiling the Pitfalls of Knowledge Editing for Large Language Models [41.83423510576848]
It is still unclear whether knowledge editing might introduce side effects that pose potential risks or not.
This paper pioneers the investigation into the potential pitfalls associated with knowledge editing for Large Language Models.
Experimental results vividly demonstrate that knowledge editing might inadvertently cast a shadow of unintended consequences.
arXiv Detail & Related papers (2023-10-03T15:10:46Z) - Eva-KELLM: A New Benchmark for Evaluating Knowledge Editing of LLMs [54.22416829200613]
Eva-KELLM is a new benchmark for evaluating knowledge editing of large language models.
Experimental results indicate that the current methods for knowledge editing using raw documents are not effective in yielding satisfactory results.
arXiv Detail & Related papers (2023-08-19T09:17:19Z) - Editing Large Language Models: Problems, Methods, and Opportunities [51.903537096207]
This paper embarks on a deep exploration of the problems, methods, and opportunities related to model editing for LLMs.
We provide an exhaustive overview of the task definition and challenges associated with model editing, along with an in-depth empirical analysis of the most progressive methods currently at our disposal.
Our objective is to provide valuable insights into the effectiveness and feasibility of each editing technique, thereby assisting the community in making informed decisions on the selection of the most appropriate method for a specific task or context.
arXiv Detail & Related papers (2023-05-22T16:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.