UNICORN: Ultrasound Nakagami Imaging via Score Matching and Adaptation
- URL: http://arxiv.org/abs/2403.06275v1
- Date: Sun, 10 Mar 2024 18:05:41 GMT
- Title: UNICORN: Ultrasound Nakagami Imaging via Score Matching and Adaptation
- Authors: Kwanyoung Kim, Jaa-Yeon Lee, Jong Chul Ye
- Abstract summary: Nakagami imaging holds promise for visualizing and quantifying tissue scattering in ultrasound waves.
Existing methods struggle with optimal window size selection and suffer from estimator instability.
We propose a novel method called UNICORN that offers an accurate, closed-form estimator for Nakagami parameter estimation.
- Score: 59.91293113930909
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nakagami imaging holds promise for visualizing and quantifying tissue
scattering in ultrasound waves, with potential applications in tumor diagnosis
and fat fraction estimation which are challenging to discern by conventional
ultrasound B-mode images. Existing methods struggle with optimal window size
selection and suffer from estimator instability, leading to degraded resolution
images. To address this, here we propose a novel method called UNICORN
(Ultrasound Nakagami Imaging via Score Matching and Adaptation), that offers an
accurate, closed-form estimator for Nakagami parameter estimation in terms of
the score function of ultrasonic envelope. Extensive experiments using
simulation and real ultrasound RF data demonstrate UNICORN's superiority over
conventional approaches in accuracy and resolution quality.
Related papers
- Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Ultrasound Imaging [32.99597899937902]
We propose a novel unsupervised anomaly detection framework based on a diffusion model.
The proposed framework incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process.
We validate the proposed approach on carotid US, brain MRI, and liver CT datasets.
arXiv Detail & Related papers (2024-11-06T15:43:51Z) - Ultrasound Image Enhancement with the Variance of Diffusion Models [7.360352432782388]
Enhancing ultrasound images requires a delicate balance between contrast, resolution, and speckle preservation.
This paper introduces a novel approach that integrates adaptive beamforming with denoising diffusion-based variance imaging.
arXiv Detail & Related papers (2024-09-17T17:29:33Z) - PHOCUS: Physics-Based Deconvolution for Ultrasound Resolution Enhancement [36.20701982473809]
The impulse function of an ultrasound imaging system is called the point spread function (PSF), which is convolved with the spatial distribution of reflectors in the image formation process.
We introduce a physics-based deconvolution process using a modeled PSF, working directly on the more commonly available B-mode images.
By leveraging Implicit Neural Representations (INRs), we learn a continuous mapping from spatial locations to their respective echogenicity values, effectively compensating for the discretized image space.
arXiv Detail & Related papers (2024-08-07T09:52:30Z) - Unpaired Optical Coherence Tomography Angiography Image Super-Resolution
via Frequency-Aware Inverse-Consistency GAN [6.717440708401628]
We propose a Generative Adversarial Network (GAN)-based unpaired super-resolution method for OCTA images.
To facilitate a precise spectrum of the reconstructed image, we also propose a frequency-aware adversarial loss for the discriminator.
Experiments show that our method outperforms other state-of-the-art unpaired methods both quantitatively and visually.
arXiv Detail & Related papers (2023-09-29T14:19:51Z) - DopUS-Net: Quality-Aware Robotic Ultrasound Imaging based on Doppler
Signal [48.97719097435527]
DopUS-Net combines the Doppler images with B-mode images to increase the segmentation accuracy and robustness of small blood vessels.
An artery re-identification module qualitatively evaluate the real-time segmentation results and automatically optimize the probe pose for enhanced Doppler images.
arXiv Detail & Related papers (2023-05-15T18:19:29Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - A Universal Deep Learning Framework for Real-Time Denoising of
Ultrasound Images [0.0]
We define a universal deep learning framework for real-time denoising of ultrasound images.
We analyse and compare state-of-the-art methods for the smoothing of ultrasound images.
Then, we propose a tuned version of the selected state-of-the-art denoising methods.
arXiv Detail & Related papers (2021-01-22T14:18:47Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.