Exploiting the Margin: How Capitalism Fuels AI at the Expense of Minoritized Groups
- URL: http://arxiv.org/abs/2403.06332v2
- Date: Wed, 1 May 2024 01:27:03 GMT
- Title: Exploiting the Margin: How Capitalism Fuels AI at the Expense of Minoritized Groups
- Authors: Nelson Colón Vargas,
- Abstract summary: This paper explores the relationship between capitalism, racial injustice, and artificial intelligence (AI)
It argues that AI acts as a contemporary vehicle for age-old forms of exploitation.
The paper promotes an approach that integrates social justice and equity into the core of technological design and policy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the intricate relationship between capitalism, racial injustice, and artificial intelligence (AI), arguing that AI acts as a contemporary vehicle for age-old forms of exploitation. By linking historical patterns of racial and economic oppression with current AI practices, this study illustrates how modern technology perpetuates and deepens societal inequalities. It specifically examines how AI is implicated in the exploitation of marginalized communities through underpaid labor in the gig economy, the perpetuation of biases in algorithmic decision-making, and the reinforcement of systemic barriers that prevent these groups from benefiting equitably from technological advances. Furthermore, the paper discusses the role of AI in extending and intensifying the social, economic, and psychological burdens faced by these communities, highlighting the problematic use of AI in surveillance, law enforcement, and mental health contexts. The analysis concludes with a call for transformative changes in how AI is developed and deployed. Advocating for a reevaluation of the values driving AI innovation, the paper promotes an approach that integrates social justice and equity into the core of technological design and policy. This shift is crucial for ensuring that AI serves as a tool for societal improvement, fostering empowerment and healing rather than deepening existing divides.
Related papers
- Toward an Artist-Centred AI [0.0]
This paper contextualizes the notions of suitability and desirability of principles, practices, and tools related to the use of AI in the arts.
It was composed by examining the challenges that AI poses to art production, distribution, consumption, and monetization.
arXiv Detail & Related papers (2024-04-13T09:43:23Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - FATE in AI: Towards Algorithmic Inclusivity and Accessibility [0.0]
To prevent algorithmic disparities, fairness, accountability, transparency, and ethics (FATE) in AI are being implemented.
This study examines FATE-related desiderata, particularly transparency and ethics, in areas of the global South that are underserved by AI.
To promote inclusivity, a community-led strategy is proposed to collect and curate representative data for responsible AI design.
arXiv Detail & Related papers (2023-01-03T15:08:10Z) - AI Governance and Ethics Framework for Sustainable AI and Sustainability [0.0]
There are many emerging AI risks for humanity, such as autonomous weapons, automation-spurred job loss, socio-economic inequality, bias caused by data and algorithms, privacy violations and deepfakes.
Social diversity, equity and inclusion are considered key success factors of AI to mitigate risks, create values and drive social justice.
In our journey towards an AI-enabled sustainable future, we need to address AI ethics and governance as a priority.
arXiv Detail & Related papers (2022-09-28T22:23:10Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Relational Artificial Intelligence [5.5586788751870175]
Even though AI is traditionally associated with rational decision making, understanding and shaping the societal impact of AI in all its facets requires a relational perspective.
A rational approach to AI, where computational algorithms drive decision making independent of human intervention, has shown to result in bias and exclusion.
A relational approach, that focus on the relational nature of things, is needed to deal with the ethical, legal, societal, cultural, and environmental implications of AI.
arXiv Detail & Related papers (2022-02-04T15:29:57Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
It appears that the area of AI that is most analogous to the behaviour of economic entities is that of morally good decision-making.
Recent successes of deep learning for AI suggest that more implicit specifications work better than explicit ones for solving such problems.
arXiv Detail & Related papers (2019-12-29T17:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.