Ada-Tracker: Soft Tissue Tracking via Inter-Frame and Adaptive-Template Matching
- URL: http://arxiv.org/abs/2403.06479v2
- Date: Fri, 24 May 2024 08:01:56 GMT
- Title: Ada-Tracker: Soft Tissue Tracking via Inter-Frame and Adaptive-Template Matching
- Authors: Jiaxin Guo, Jiangliu Wang, Zhaoshuo Li, Tongyu Jia, Qi Dou, Yun-Hui Liu,
- Abstract summary: We exploit optical flow to naturally capture the pixel-wise tissue deformations and adaptively correct the tracked template.
Ada-Tracker achieves superior accuracy and performs more robustly against prior works.
- Score: 37.968954191944576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Soft tissue tracking is crucial for computer-assisted interventions. Existing approaches mainly rely on extracting discriminative features from the template and videos to recover corresponding matches. However, it is difficult to adopt these techniques in surgical scenes, where tissues are changing in shape and appearance throughout the surgery. To address this problem, we exploit optical flow to naturally capture the pixel-wise tissue deformations and adaptively correct the tracked template. Specifically, we first implement an inter-frame matching mechanism to extract a coarse region of interest based on optical flow from consecutive frames. To accommodate appearance change and alleviate drift, we then propose an adaptive-template matching method, which updates the tracked template based on the reliability of the estimates. Our approach, Ada-Tracker, enjoys both short-term dynamics modeling by capturing local deformations and long-term dynamics modeling by introducing global temporal compensation. We evaluate our approach on the public SurgT benchmark, which is generated from Hamlyn, SCARED, and Kidney boundary datasets. The experimental results show that Ada-Tracker achieves superior accuracy and performs more robustly against prior works. Code is available at https://github.com/wrld/Ada-Tracker.
Related papers
- DINTR: Tracking via Diffusion-based Interpolation [12.130669304428565]
This work proposes a novel diffusion-based methodology to formulate the tracking task.
Our INterpolation TrackeR (DINTR) presents a promising new paradigm and achieves a superior multiplicity on seven benchmarks across five indicator representations.
arXiv Detail & Related papers (2024-10-14T00:41:58Z) - MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
We present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes.
By simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes.
We show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics.
arXiv Detail & Related papers (2024-10-04T18:00:07Z) - Degrees of Freedom Matter: Inferring Dynamics from Point Trajectories [28.701879490459675]
We aim to learn an implicit motion field parameterized by a neural network to predict the movement of novel points within same domain.
We exploit intrinsic regularization provided by SIREN, and modify the input layer to produce atemporally smooth motion field.
Our experiments assess the model's performance in predicting unseen point trajectories and its application in temporal mesh alignment with deformation.
arXiv Detail & Related papers (2024-06-05T21:02:10Z) - Autoregressive Queries for Adaptive Tracking with Spatio-TemporalTransformers [55.46413719810273]
rich-temporal information is crucial to the complicated target appearance in visual tracking.
Our method improves the tracker's performance on six popular tracking benchmarks.
arXiv Detail & Related papers (2024-03-15T02:39:26Z) - Multi-step Temporal Modeling for UAV Tracking [14.687636301587045]
We introduce MT-Track, a streamlined and efficient multi-step temporal modeling framework for enhanced UAV tracking.
We unveil a unique temporal correlation module that dynamically assesses the interplay between the template and search region features.
We propose a mutual transformer module to refine the correlation maps of historical and current frames by modeling the temporal knowledge in the tracking sequence.
arXiv Detail & Related papers (2024-03-07T09:48:13Z) - ACTrack: Adding Spatio-Temporal Condition for Visual Object Tracking [0.5371337604556311]
Efficiently modeling-temporal relations of objects is a key challenge in visual object tracking (VOT)
Existing methods track by appearance-based similarity or long-term relation modeling, resulting in rich temporal contexts between consecutive frames being easily overlooked.
In this paper we present ACTrack, a new framework with additive pre-temporal tracking framework with large memory conditions. It preserves the quality and capabilities of the pre-trained backbone by freezing its parameters, and makes a trainable lightweight additive net to model temporal relations in tracking.
We design an additive siamese convolutional network to ensure the integrity of spatial features and temporal sequence
arXiv Detail & Related papers (2024-02-27T07:34:08Z) - Neural Motion Fields: Encoding Grasp Trajectories as Implicit Value
Functions [65.84090965167535]
We present Neural Motion Fields, a novel object representation which encodes both object point clouds and the relative task trajectories as an implicit value function parameterized by a neural network.
This object-centric representation models a continuous distribution over the SE(3) space and allows us to perform grasping reactively by leveraging sampling-based MPC to optimize this value function.
arXiv Detail & Related papers (2022-06-29T18:47:05Z) - Learning Dynamic Compact Memory Embedding for Deformable Visual Object
Tracking [82.34356879078955]
We propose a compact memory embedding to enhance the discrimination of the segmentation-based deformable visual tracking method.
Our method outperforms the excellent segmentation-based trackers, i.e., D3S and SiamMask on DAVIS 2017 benchmark.
arXiv Detail & Related papers (2021-11-23T03:07:12Z) - TrTr: Visual Tracking with Transformer [29.415900191169587]
We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder architecture.
We design the classification and regression heads using the output of Transformer to localize target based on shape-agnostic anchor.
Our method performs favorably against state-of-the-art algorithms.
arXiv Detail & Related papers (2021-05-09T02:32:28Z) - Transformer Tracking [76.96796612225295]
Correlation acts as a critical role in the tracking field, especially in popular Siamese-based trackers.
This work presents a novel attention-based feature fusion network, which effectively combines the template and search region features solely using attention.
Experiments show that our TransT achieves very promising results on six challenging datasets.
arXiv Detail & Related papers (2021-03-29T09:06:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.