Ultrafast and highly collimated radially polarized photons from a colloidal quantum dot in a hybrid nanoantenna at room-temperature
- URL: http://arxiv.org/abs/2403.06523v2
- Date: Sun, 24 Mar 2024 07:36:28 GMT
- Title: Ultrafast and highly collimated radially polarized photons from a colloidal quantum dot in a hybrid nanoantenna at room-temperature
- Authors: Alexander Nazarov, Yuval Bloom, Boaz Lubotzky, Hamza Abudayyeh, Annika Mildner, Lorenzo Baldessarini, Yuval Shemla, Eric G. Bowes, Monika Fleischer, Jennifer A. Hollingsworth, Ronen Rapaport,
- Abstract summary: A room-temperature device generates highly directional radially polarized photons at very high rates.
The emitted photons can have a very high degree of radial polarization (>93%) based on a quantitative metric.
Our study contributes to the fundamental understanding of radial polarization in nanostructured devices and paves the way for implementation of such systems in practical applications.
- Score: 33.013211742281996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To harness the potential of radially polarized single photons in applications such as high-dimensional quantum key distribution (HD-QKD) and quantum communication, we demonstrate an on-chip, room-temperature device, which generates highly directional radially polarized photons at very high rates. The photons are emitted from a giant CdSe/CdS colloidal quantum dot (gQD) accurately positioned at the tip of a metal nanocone centered inside a hybrid metal-dielectric bullseye antenna. We show that due to the large and selective Purcell enhancement specifically for the out-of-plane optical dipole of the gQD, the emitted photons can have a very high degree of radial polarization (>93%), based on a quantitative metric. Our study emphasizes the importance of accurate gQD positioning for optimal radial polarization purity through extensive experiments and simulations, which contribute to the fundamental understanding of radial polarization in nanostructured devices and pave the way for implementation of such systems in practical applications using structured quantum light.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Quantum Emitters in Aluminum Nitride Induced by Zirconium Ion
Implantation [70.64959705888512]
This study investigates aluminum nitride (AlN) as a material with properties highly suitable for integrated on-chip photonics.
We conduct a comprehensive study of the creation and photophysical properties of single-photon emitters in AlN utilizing Zirconium (Zr) and Krypton (Kr) heavy ion implantation.
With the 532 nm excitation wavelength, we found that single-photon emitters induced by ion implantation are primarily associated with vacancy-type defects in the AlN lattice for both Zr and Kr ions.
arXiv Detail & Related papers (2024-01-26T03:50:33Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Room Temperature Fiber-Coupled single-photon devices based on Colloidal
Quantum Dots and SiV centers in Back Excited Nanoantennas [91.6474995587871]
Directionality is achieved with a hybrid metal-dielectric bullseye antenna.
Back-excitation is permitted by placement of the emitter at or in a sub-wavelength hole positioned at the bullseye center.
arXiv Detail & Related papers (2023-03-19T14:54:56Z) - Transition metal ion ensembles in crystals as solid-state coherent
spin-photon interfaces: The case of nickel in magnesium oxide [0.0]
We present general guidelines for finding solid-state systems that could serve as coherent electron spin-photon interfaces.
We show that transition metal ions in various crystals could comply with these guidelines.
arXiv Detail & Related papers (2022-12-30T17:10:04Z) - Plasmonic Dimers Enhanced Polarized Single Photon Coupled to Optical
Nanowire [0.0]
We propose a system for guiding plasmon-enhanced polarized single photons into optical nanowire guided modes.
The proposed hybrid quantum system can be in-line with fiber networks, opening the door for possible quantum information processing and quantum cryptography applications.
arXiv Detail & Related papers (2022-12-17T07:45:04Z) - SmartCut Er:LiNbO3 with high optical coherence enabling optical
thickness control [0.5130440339897477]
Integrated photonics capable of incorporating rare earth ions with high optical coherence is desirable for realizing efficient quantum transducers, compact quantum memories, and hybrid quantum systems.
We describe a photonic platform based on the SmartCut erbium-doped lithium niobate thin film, and explore its stable optical transitions at telecom wavelength in a dilution refrigerator.
arXiv Detail & Related papers (2022-06-25T13:02:07Z) - Efficient single-photon pair generation by spontaneous parametric
down-conversion in nonlinear plasmonic metasurfaces [0.0]
Spontaneous parametric down-conversion (SPDC) is one of the most versatile nonlinear optical techniques for the generation of entangled and correlated single-photon pairs.
Here we propose a plasmonic metasurface design based on silver nanostripes combined with a bulk lithium niobate (LiNbO3) crystal to realize a new scalable, ultrathin, and efficient SPDC source.
arXiv Detail & Related papers (2021-11-18T15:31:38Z) - Cavity Quantum Electrodynamics Design with Single Photon Emitters in
Hexagonal Boron Nitride [6.352389759470726]
We numerically investigate the cavity quantum electrodynamics (cavity-QED) scheme incorporating defect-enabled single photon emitters in h-BN microdisk resonators.
The whispering-gallery nature of microdisks can support multiple families of cavity resonances with different radial and azimuthal mode indices simultaneously.
This study contributes toward realizing h-BN photonic components, such as low-threshold microcavity lasers and high-purity single photon sources.
arXiv Detail & Related papers (2021-06-05T21:53:44Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.