Efficient single-photon pair generation by spontaneous parametric
down-conversion in nonlinear plasmonic metasurfaces
- URL: http://arxiv.org/abs/2111.09753v1
- Date: Thu, 18 Nov 2021 15:31:38 GMT
- Title: Efficient single-photon pair generation by spontaneous parametric
down-conversion in nonlinear plasmonic metasurfaces
- Authors: Boyuan Jin, Dhananjay Mishra, and Christos Argyropoulos
- Abstract summary: Spontaneous parametric down-conversion (SPDC) is one of the most versatile nonlinear optical techniques for the generation of entangled and correlated single-photon pairs.
Here we propose a plasmonic metasurface design based on silver nanostripes combined with a bulk lithium niobate (LiNbO3) crystal to realize a new scalable, ultrathin, and efficient SPDC source.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spontaneous parametric down-conversion (SPDC) is one of the most versatile
nonlinear optical techniques for the generation of entangled and correlated
single-photon pairs. However, it suffers from very poor efficiency leading to
extremely weak photon generation rates. Here we propose a plasmonic metasurface
design based on silver nanostripes combined with a bulk lithium niobate
(LiNbO3) crystal to realize a new scalable, ultrathin, and efficient SPDC
source. By coinciding fundamental and higher order resonances of the
metasurface with the generated signal and idler frequencies, respectively, the
electric field in the nonlinear media is significantly boosted. This leads to a
substantially enhancement in the SPDC process which, subsequently, by using the
quantum-classical correspondence principle, translates to very high photon-pair
generation rates. The emitted radiation is highly directional and perpendicular
to the metasurface on the contrary to relevant dielectric structures. The
incorporation of circular polarized excitation further increases the
photon-pair generation efficiency. The presented work will lead to the design
of new efficient ultrathin SPDC single-photon nanophotonic sources working at
room temperature that are expected to be critical components in free-space
quantum optical communications. In a more general context, our findings can
find various applications in the emerging field of quantum plasmonics.
Related papers
- Quantum Pair Generation in Nonlinear Metasurfaces with Mixed and Pure Photon Polarizations [0.09423257767158633]
We present a solution by achieving polarization engineering of frequency-nondegenerate biphotons emitted via spontaneous parametric down-conversion.
By performing a comprehensive polarization tomography, we demonstrate that the polarization of the emitted photons directly reflects the qBIC mode's far-field properties.
arXiv Detail & Related papers (2024-09-06T19:17:11Z) - Scalable microwave-to-optical transducers at single photon level with spins [4.142140287566351]
Microwave-to-optical transduction of single photons will play an essential role in interconnecting future superconducting quantum devices.
We implement an on-chip microwave-to-optical transducer using rare-earth ion (REI) doped crystals.
We demonstrate the interference of photons originating from two simultaneously operated transducers, enabled by the inherent absolute frequencies of the atomic transitions.
arXiv Detail & Related papers (2024-07-11T21:43:02Z) - Efficient photon-pair generation in layer-poled lithium niobate nanophotonic waveguides [10.571773636879247]
Thin-film lithium niobate is a promising platform for on-chip photon-pair generation.
We introduce a layer-poled lithium niobate (LPLN) nanophotonic waveguide for efficient photon-pair generation.
We demonstrate photon-pair generation with a normalized brightness of 3.1*106 Hz nm-1 mW-2 in a 3.3 mm long LPLN waveguide.
arXiv Detail & Related papers (2024-05-17T17:57:26Z) - Directionally Tunable Co- and Counter-Propagating Photon Pairs from a
Nonlinear Metasurface [0.0]
We show for the first time precise control of the emission angle of photon pairs generated from a nonlinear metasurface.
Our measurements show angularly tunable pair-generation with high coincidence-to-accidental ratio.
This work provides an important addition to the toolset of sub-wavelength thickness photon pair sources.
arXiv Detail & Related papers (2024-03-12T13:35:57Z) - Efficient Microwave Photon to Electron Conversion in a High Impedance Quantum Circuit [0.0]
We demonstrate an efficient and continuous microwave photon to electron converter with large quantum efficiency ($83%$) and low dark current.
These unique properties are enabled by the use of a high kinetic inductance disordered superconductor, granular aluminium.
arXiv Detail & Related papers (2023-12-21T17:44:33Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Enhanced generation of non-degenerate photon-pairs in nonlinear
metasurfaces [55.41644538483948]
Non-degenerate photon-pair generation can enable orders-of-surface enhancement of the photon rate and spectral brightness.
We show that the entanglement of the photon-pairs can be tuned by varying the pump polarization, which can underpin future advances and applications of ultra-compact quantum light sources.
arXiv Detail & Related papers (2021-04-15T08:20:17Z) - Directional emission of down-converted photons from a dielectric
nano-resonator [55.41644538483948]
We theoretically describe the generation of photon pairs in the process of spontaneous parametric down-conversion.
We reveal that highly directional photon-pair generation can be observed utilising the nonlinear Kerker-type effect.
arXiv Detail & Related papers (2020-11-16T10:30:04Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.