Guiding Clinical Reasoning with Large Language Models via Knowledge Seeds
- URL: http://arxiv.org/abs/2403.06609v2
- Date: Sat, 8 Jun 2024 04:14:46 GMT
- Title: Guiding Clinical Reasoning with Large Language Models via Knowledge Seeds
- Authors: Jiageng WU, Xian Wu, Jie Yang,
- Abstract summary: Clinical reasoning refers to the cognitive process that physicians employ in evaluating and managing patients.
In this study, we introduce a novel framework, In-Context Padding (ICP), designed to enhance LLMs with medical knowledge.
- Score: 32.99251005719732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical reasoning refers to the cognitive process that physicians employ in evaluating and managing patients. This process typically involves suggesting necessary examinations, diagnosing patients' diseases, and deciding on appropriate therapies, etc. Accurate clinical reasoning requires extensive medical knowledge and rich clinical experience, setting a high bar for physicians. This is particularly challenging in developing countries due to the overwhelming number of patients and limited physician resources, contributing significantly to global health inequity and necessitating automated clinical reasoning approaches. Recently, the emergence of large language models (LLMs) such as ChatGPT and GPT-4 have demonstrated their potential in clinical reasoning. However, these LLMs are prone to hallucination problems, and the reasoning process of LLMs may not align with the clinical decision path of physicians. In this study, we introduce a novel framework, In-Context Padding (ICP), designed to enhance LLMs with medical knowledge. Specifically, we infer critical clinical reasoning elements (referred to as knowledge seeds) and use these as anchors to guide the generation process of LLMs. Experiments on two clinical question datasets demonstrate that ICP significantly improves the clinical reasoning ability of LLMs.
Related papers
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - DiReCT: Diagnostic Reasoning for Clinical Notes via Large Language Models [32.85606857702375]
We aim at evaluating the reasoning ability and interpretability of large language models (LLMs) compared to human doctors.
The diagnostic reasoning dataset for clinical notes (DiReCT) contains 511 clinical notes, each meticulously annotated by physicians.
arXiv Detail & Related papers (2024-08-04T05:15:02Z) - CliBench: A Multifaceted and Multigranular Evaluation of Large Language Models for Clinical Decision Making [16.310913127940857]
We introduce CliBench, a novel benchmark developed from the MIMIC IV dataset.
This benchmark offers a comprehensive and realistic assessment of LLMs' capabilities in clinical diagnosis.
We conduct a zero-shot evaluation of leading LLMs to assess their proficiency in clinical decision-making.
arXiv Detail & Related papers (2024-06-14T11:10:17Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
We build a benchmark ClinicBench to better understand large language models (LLMs) in the clinic.
We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks.
We then construct six novel datasets and clinical tasks that are complex but common in real-world practice.
We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings.
arXiv Detail & Related papers (2024-04-25T15:51:06Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large
Language Models [56.36916128631784]
We introduce MedBench, a comprehensive benchmark for the Chinese medical domain.
This benchmark is composed of four key components: the Chinese Medical Licensing Examination, the Resident Standardization Training Examination, and real-world clinic cases.
We perform extensive experiments and conduct an in-depth analysis from diverse perspectives, which culminate in the following findings.
arXiv Detail & Related papers (2023-12-20T07:01:49Z) - Large Language Models are Clinical Reasoners: Reasoning-Aware Diagnosis Framework with Prompt-Generated Rationales [15.362903610463285]
We present a "reasoning-aware" diagnosis framework that rationalizes the diagnostic process via prompt-based learning.
We propose a novel set of criteria for evaluating machine-generated rationales' potential for real-world clinical settings.
arXiv Detail & Related papers (2023-12-12T16:14:45Z) - Diagnostic Reasoning Prompts Reveal the Potential for Large Language
Model Interpretability in Medicine [4.773117448586697]
We develop novel diagnostic reasoning prompts to study whether large language models (LLMs) can perform clinical reasoning to accurately form a diagnosis.
We find GPT4 can be prompted to mimic the common clinical reasoning processes of clinicians without sacrificing diagnostic accuracy.
arXiv Detail & Related papers (2023-08-13T19:04:07Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridge is a visual analytics tool that seamlessly incorporates machine learning explanations into clinicians' decision-making workflow.
We identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence.
We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians.
arXiv Detail & Related papers (2021-08-04T17:34:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.