論文の概要: NeuPAN: Direct Point Robot Navigation with End-to-End Model-based Learning
- arxiv url: http://arxiv.org/abs/2403.06828v3
- Date: Tue, 11 Feb 2025 15:47:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:03:38.818084
- Title: NeuPAN: Direct Point Robot Navigation with End-to-End Model-based Learning
- Title(参考訳): NeuPAN: エンド・ツー・エンドモデル学習によるダイレクトポイントロボットナビゲーション
- Authors: Ruihua Han, Shuai Wang, Shuaijun Wang, Zeqing Zhang, Jianjun Chen, Shijie Lin, Chengyang Li, Chengzhong Xu, Yonina C. Eldar, Qi Hao, Jia Pan,
- Abstract要約: 乱雑で未知の環境で非ホロノミックロボットをナビゲートするには、リアルタイム衝突回避のための正確な認識と正確な動きが必要である。
本稿では, リアルタイム, 高精度, 地図のない, 展開が容易で, 環境によらないロボットモーションプランナであるNeuPANについて述べる。
- 参考スコア(独自算出の注目度): 67.53972459080437
- License:
- Abstract: Navigating a nonholonomic robot in a cluttered, unknown environment requires accurate perception and precise motion control for real-time collision avoidance. This paper presents NeuPAN: a real-time, highly accurate, map-free, easy-to-deploy, and environment-invariant robot motion planner. Leveraging a tightly coupled perception-to-control framework, NeuPAN has two key innovations compared to existing approaches: 1) it directly maps raw point cloud data to a latent distance feature space for collision-free motion generation, avoiding error propagation from the perception to control pipeline; 2) it is interpretable from an end-to-end model-based learning perspective. The crux of NeuPAN is solving an end-to-end mathematical model with numerous point-level constraints using a plug-and-play (PnP) proximal alternating-minimization network (PAN), incorporating neurons in the loop. This allows NeuPAN to generate real-time, physically interpretable motions. It seamlessly integrates data and knowledge engines, and its network parameters can be fine-tuned via backpropagation. We evaluate NeuPAN on a ground mobile robot, a wheel-legged robot, and an autonomous vehicle, in extensive simulated and real-world environments. Results demonstrate that NeuPAN outperforms existing baselines in terms of accuracy, efficiency, robustness, and generalization capabilities across various environments, including the cluttered sandbox, office, corridor, and parking lot. We show that NeuPAN works well in unknown and unstructured environments with arbitrarily shaped objects, transforming impassable paths into passable ones.
- Abstract(参考訳): 乱雑で未知の環境で非ホロノミックロボットをナビゲートするには、リアルタイム衝突回避のための正確な認識と正確な動き制御が必要である。
本稿では, リアルタイム, 高精度, 地図のない, 展開が容易で, 環境によらないロボットモーションプランナであるNeuPANについて述べる。
NeuPANは密結合の知覚制御フレームワークを活用し、既存のアプローチと比較して2つの重要なイノベーションを持っている。
1) 生の点雲データを遅延距離特徴空間に直接マッピングし, 衝突のない運動生成を行い, 知覚から制御パイプラインへの誤差伝播を回避する。
2)エンド・ツー・エンドのモデルベース学習の観点から解釈できる。
NeuPANの要点は、プラグイン・アンド・プレイ(PnP)近位交互最小化ネットワーク(PAN)を用いて、ループにニューロンを組み込んだ、多数の点レベルの制約を持つエンドツーエンドの数学的モデルを解くことである。
これにより、NeuPANはリアルタイムで物理的に解釈可能なモーションを生成することができる。
データとナレッジエンジンをシームレスに統合し、バックプロパゲーションによってネットワークパラメータを微調整することができる。
地上移動ロボット,車輪脚ロボット,自律走行車上でのNeuPANのシミュレーションおよび実環境における評価を行った。
以上の結果から,NuPANは,散在する砂場,オフィス,廊下,駐車場など,様々な環境において,精度,効率,堅牢性,一般化能力において,既存のベースラインを上回っていることが示された。
我々は、NeuPANが任意の形状の物体で未知の非構造環境でうまく機能し、不必要な経路を通過可能な経路に変換することを示す。
関連論文リスト
- Watch Your STEPP: Semantic Traversability Estimation using Pose Projected Features [4.392942391043664]
人間の歩行のデモンストレーションから学ぶことにより,地形の移動性を評価する手法を提案する。
提案手法は,DINOv2視覚変換器モデルを用いて生成した高密度画素ワイドな特徴埋め込みを利用する。
損失を最小化することにより、ネットワークは、低い復元誤差で見慣れた地形と、高い復元誤差で見慣れないまたは危険な地形とを区別する。
論文 参考訳(メタデータ) (2025-01-29T11:53:58Z) - RPMArt: Towards Robust Perception and Manipulation for Articulated Objects [56.73978941406907]
本稿では,Articulated Objects (RPMArt) のロバスト知覚と操作のためのフレームワークを提案する。
RPMArtは、調音パラメータを推定し、雑音の多い点雲から調音部分を操作することを学習する。
我々は,シミュレート・トゥ・リアル・トランスファーの能力を高めるための調音認識型分類手法を提案する。
論文 参考訳(メタデータ) (2024-03-24T05:55:39Z) - Learning to navigate efficiently and precisely in real environments [14.52507964172957]
Embodied AIの文献は、HabitatやAI-Thorといったシミュレータで訓練されたエンドツーエンドエージェントに焦点を当てている。
本研究では,sim2realのギャップを最小限に抑えたシミュレーションにおけるエージェントのエンドツーエンドトレーニングについて検討する。
論文 参考訳(メタデータ) (2024-01-25T17:50:05Z) - Neural Potential Field for Obstacle-Aware Local Motion Planning [46.42871544295734]
本稿では,ロボットのポーズ,障害物マップ,ロボットのフットプリントに基づいて,異なる衝突コストを返却するニューラルネットワークモデルを提案する。
私たちのアーキテクチャには、障害物マップとロボットフットプリントを埋め込みに変換するニューラルイメージエンコーダが含まれています。
Husky UGVモバイルロボットの実験は、我々のアプローチがリアルタイムで安全なローカルプランニングを可能にすることを示した。
論文 参考訳(メタデータ) (2023-10-25T05:00:21Z) - iSDF: Real-Time Neural Signed Distance Fields for Robot Perception [64.80458128766254]
iSDFは実時間符号付き距離場再構成のための連続学習システムである。
より正確な再構築と、衝突コストと勾配のより良い近似を生成する。
論文 参考訳(メタデータ) (2022-04-05T15:48:39Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。