Distributed computing quantum unitary evolution
- URL: http://arxiv.org/abs/2403.06937v3
- Date: Thu, 5 Sep 2024 11:42:34 GMT
- Title: Distributed computing quantum unitary evolution
- Authors: Hui-hui Miao, Yuri Igorevich Ozhigov,
- Abstract summary: A distributed computing approach to solve the curse of dimensionality, caused by the complex quantum system modeling, is discussed.
Based on the Tavis-Cummings model, a large number of atoms are added into the optical cavity to obtain a high-dimensional quantum closed system, implemented on the supercomputer platform.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A distributed computing approach to solve the curse of dimensionality, caused by the complex quantum system modeling, is discussed. With the help of Cannon's algorithm, the distributed computing transformation of numerical method for simulating quantum unitary evolution is achieved. Based on the Tavis-Cummings model, a large number of atoms are added into the optical cavity to obtain a high-dimensional quantum closed system, implemented on the supercomputer platform. The comparison of time cost and speedup of different distributed computing strategies is discussed.
Related papers
- Distributed Quantum Computing in Silicon [40.16556091789959]
We present preliminary demonstrations of some key distributed quantum computing protocols on silicon T centres in isotopically-enriched silicon.
We demonstrate the distribution of entanglement between modules and consume it to apply a teleported gate sequence.
arXiv Detail & Related papers (2024-06-03T18:02:49Z) - Simulating Field Theories with Quantum Computers [1.0377683220196874]
We identify different sources of errors prevalent in various quantum processing units and discuss challenges to scale up the size of the computation.
We present benchmark results obtained on a variety of platforms and employ a range of error mitigation techniques to address coherent and incoherent noise.
arXiv Detail & Related papers (2024-01-03T20:07:31Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum Chebyshev Transform: Mapping, Embedding, Learning and Sampling
Distributions [18.124351208075062]
We show how to encode data into quantum states with amplitudes growing exponentially in the system size.
We propose an embedding circuit for generating the orthonormal Chebyshev basis of exponential capacity.
This enables automatic model differentiation, and opens a route to solving differential equations.
arXiv Detail & Related papers (2023-06-29T15:19:32Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Parallel Quantum Chemistry on Noisy Intermediate-Scale Quantum Computers [0.0]
A novel hybrid quantum-classical algorithm is presented for the solution of the quantum-chemical ground-state energy problem.
The new approach is demonstrated for Hubbard-like systems on IBM quantum computers based on superconducting transmon qubits.
arXiv Detail & Related papers (2022-02-04T22:28:17Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Distributed Quantum Computing and Network Control for Accelerated VQE [0.0]
We consider an approach for distributing the accelerated variational quantum eigensolver (AVQE) algorithm over arbitrary sized - in terms of number of qubits - distributed quantum computers.
We propose an architecture for a distributed quantum control system in the settings of centralized and decentralized network control.
arXiv Detail & Related papers (2021-01-07T11:50:24Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.