Distributed Quantum Computing and Network Control for Accelerated VQE
- URL: http://arxiv.org/abs/2101.02504v1
- Date: Thu, 7 Jan 2021 11:50:24 GMT
- Title: Distributed Quantum Computing and Network Control for Accelerated VQE
- Authors: Stephen DiAdamo, Marco Ghibaudi, James Cruise
- Abstract summary: We consider an approach for distributing the accelerated variational quantum eigensolver (AVQE) algorithm over arbitrary sized - in terms of number of qubits - distributed quantum computers.
We propose an architecture for a distributed quantum control system in the settings of centralized and decentralized network control.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interconnecting small quantum computers will be essential in the future for
creating large scale, robust quantum computers. Methods for distributing
monolithic quantum algorithms efficiently are thus needed. In this work we
consider an approach for distributing the accelerated variational quantum
eigensolver (AVQE) algorithm over arbitrary sized - in terms of number of
qubits - distributed quantum computers. We consider approaches for distributing
qubit assignments of the Ansatz states required to estimate the expectation
value of Hamiltonian operators in quantum chemistry in a parallelized
computation and provide a systematic approach to generate distributed quantum
circuits for distributed quantum computing. Moreover, we propose an
architecture for a distributed quantum control system in the settings of
centralized and decentralized network control.
Related papers
- DisQ: A Markov Decision Process Based Language for Quantum Distributed Systems [0.0]
We present DisQ as a framework to facilitate the rewrites of quantum algorithms to their distributed versions.
DisQ combines the concepts of Chemical Abstract Machine (CHAM) and Markov Decision Processes (MDP) with the objective of providing a clearly distinguishing quantum concurrent and distributed behaviors.
We present several case studies, such as quantum addition and Shor's algorithm, to demonstrate their equivalent rewrites to distributed versions.
arXiv Detail & Related papers (2024-07-12T22:26:22Z) - Distributed Quantum Computing in Silicon [40.16556091789959]
We present preliminary demonstrations of some key distributed quantum computing protocols on silicon T centres in isotopically-enriched silicon.
We demonstrate the distribution of entanglement between modules and consume it to apply a teleported gate sequence.
arXiv Detail & Related papers (2024-06-03T18:02:49Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Resource Allocation in Quantum Networks for Distributed Quantum
Computing [0.0]
Current trend suggests that quantum computing will become available at scale for commercial purposes in the near future.
Quantum Internet requires the interconnection of quantum computers by quantum links and repeaters to exchange entangled quantum bits.
This paper investigates the requirements and objectives of smart computing on distributed nodes from the perspective of quantum network provisioning.
arXiv Detail & Related papers (2022-03-11T10:46:31Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum Algorithms and Simulation for Parallel and Distributed Quantum
Computing [0.0]
A viable approach for building large-scale quantum computers is to interlink small-scale quantum computers with a quantum network.
We present our software framework called Interlin-q, a simulation platform that aims to simplify designing and verifying parallel and distributed quantum algorithms.
arXiv Detail & Related papers (2021-06-12T19:41:48Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Distributed Quantum Computing with QMPI [11.71212583708166]
We introduce an extension of the Message Passing Interface (MPI) to enable high-performance implementations of distributed quantum algorithms.
In addition to a prototype implementation of quantum MPI, we present a performance model for distributed quantum computing, SENDQ.
arXiv Detail & Related papers (2021-05-03T18:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.