DynaBench: A benchmark dataset for learning dynamical systems from
low-resolution data
- URL: http://arxiv.org/abs/2306.05805v2
- Date: Thu, 28 Sep 2023 07:40:19 GMT
- Title: DynaBench: A benchmark dataset for learning dynamical systems from
low-resolution data
- Authors: Andrzej Dulny and Andreas Hotho and Anna Krause
- Abstract summary: We introduce a novel simulated benchmark dataset, DynaBench, for learning dynamical systems directly from sparse data.
The dataset focuses on predicting the evolution of a dynamical system from low-resolution, unstructured measurements.
- Score: 3.8695554579762814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous work on learning physical systems from data has focused on
high-resolution grid-structured measurements. However, real-world knowledge of
such systems (e.g. weather data) relies on sparsely scattered measuring
stations. In this paper, we introduce a novel simulated benchmark dataset,
DynaBench, for learning dynamical systems directly from sparsely scattered data
without prior knowledge of the equations. The dataset focuses on predicting the
evolution of a dynamical system from low-resolution, unstructured measurements.
We simulate six different partial differential equations covering a variety of
physical systems commonly used in the literature and evaluate several machine
learning models, including traditional graph neural networks and point cloud
processing models, with the task of predicting the evolution of the system. The
proposed benchmark dataset is expected to advance the state of art as an
out-of-the-box easy-to-use tool for evaluating models in a setting where only
unstructured low-resolution observations are available. The benchmark is
available at https://anonymous.4open.science/r/code-2022-dynabench/.
Related papers
- Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Physics Sensor Based Deep Learning Fall Detection System [0.9128828609564524]
We build a complete system named TSFallDetect including data receiving device based on embedded sensor.
We exploit the sequential deep-learning methods to address this falling motion prediction problem based on data collected by inertial and film pressure sensors.
arXiv Detail & Related papers (2024-02-29T07:50:06Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Knowledge-Based Learning of Nonlinear Dynamics and Chaos [3.673994921516517]
We present a universal learning framework for extracting predictive models from nonlinear systems based on observations.
Our framework can readily incorporate first principle knowledge because it naturally models nonlinear systems as continuous-time systems.
arXiv Detail & Related papers (2020-10-07T13:50:13Z) - Bridging the Gap: Machine Learning to Resolve Improperly Modeled
Dynamics [4.940323406667406]
We present a data-driven modeling strategy to overcome improperly modeled dynamics for systems exhibiting complex-temporal behaviors.
We propose a Deep Learning framework to resolve the differences between the true dynamics of the system and the dynamics given by a model of the system that is either inaccurately or inadequately described.
arXiv Detail & Related papers (2020-08-23T04:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.