論文の概要: Non-Intrusive Load Monitoring with Missing Data Imputation Based on
Tensor Decomposition
- arxiv url: http://arxiv.org/abs/2403.07012v1
- Date: Sat, 9 Mar 2024 10:01:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 00:11:19.102997
- Title: Non-Intrusive Load Monitoring with Missing Data Imputation Based on
Tensor Decomposition
- Title(参考訳): テンソル分解に基づくミスデータ計算による非侵入負荷モニタリング
- Authors: DengYu Shi
- Abstract要約: 本稿では、非負の非負の潜在因子化(PNLFT)を組み込んだPID(Proportional-Integral-Derivative)の革新的完成モデルを提案する。
NILMデータの特徴を考慮すると、モデルの学習方式では非負の更新規則が提案される。
3つのデータセットの実験結果は、最先端モデルと比較して、提案モデルが収束速度と精度の両方において注目すべき拡張を示すことを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the widespread adoption of Non-Intrusive Load Monitoring (NILM) in
building energy management, ensuring the high quality of NILM data has become
imperative. However, practical applications of NILM face challenges associated
with data loss, significantly impacting accuracy and reliability in energy
management. This paper addresses the issue of NILM data loss by introducing an
innovative tensor completion(TC) model- Proportional-Integral-Derivative
(PID)-incorporated Non-negative Latent Factorization of Tensors (PNLFT) with
twofold ideas: 1) To tackle the issue of slow convergence in Latent
Factorization of Tensors (LFT) using Stochastic Gradient Descent (SGD), a
Proportional-Integral-Derivative controller is introduced during the learning
process. The PID controller utilizes historical and current information to
control learning residuals. 2) Considering the characteristics of NILM data,
non-negative update rules are proposed in the model's learning scheme.
Experimental results on three datasets demonstrate that, compared to
state-of-the-art models, the proposed model exhibits noteworthy enhancements in
both convergence speed and accuracy.
- Abstract(参考訳): エネルギー管理における非侵入負荷モニタリング(Non-Intrusive Load Monitoring, NILM)の普及に伴い, NILMデータの高品質化が不可欠となった。
しかし、NILMの実践的な応用は、データ損失に関連する課題に直面し、エネルギー管理の精度と信頼性に大きな影響を及ぼす。
本稿では,2次元のアイデアを持つテンソル(pnlft)の比例積分型導出型(pid)-非負因数分解による革新的テンソル補完(tc)モデルを導入することで,nilmデータ損失問題に対処する。
1) 確率勾配降下(sgd)を用いたテンソルの潜在因子分解(lft)の遅い収束問題に対処するために, 学習過程中に比例積分型導出制御器を導入する。
PIDコントローラは、過去の情報と現在の情報を利用して学習残差を制御する。
2) NILMデータの特徴を考慮すると, モデル学習方式では非負の更新規則が提案される。
3つのデータセットの実験結果は、最先端モデルと比較して、提案モデルが収束速度と精度の両方において注目すべき拡張を示すことを示した。
関連論文リスト
- Graph Adapter of EEG Foundation Models for Parameter Efficient Fine Tuning [1.8946099300030472]
EEG-GraphAdapter (EGA) はパラメータ効率の高い微細チューニング(PEFT)アプローチである。
EGAは、GNNベースのモジュールとして、事前訓練された時間バックボーンモデルに統合される。
バックボーンのBENDRモデルと比較すると、F1スコアでは最大16.1%の性能向上を実現している。
論文 参考訳(メタデータ) (2024-11-25T07:30:52Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - Federated Sequence-to-Sequence Learning for Load Disaggregation from Unbalanced Low-Resolution Smart Meter Data [5.460776507522276]
非侵入負荷モニタリング(NILM)は、エネルギー意識を高め、エネルギープログラム設計のための貴重な洞察を提供する。
既存のNILM法は、しばしば高サンプリング複雑な信号データを取得するための特殊な装置に依存している。
そこで本研究では,12種類の機器の負荷分散を実現するために,容易にアクセス可能な気象データを用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T13:04:49Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - An Energy-Efficient Ensemble Approach for Mitigating Data Incompleteness in IoT Applications [0.0]
同時にエネルギー効率を向上しながら、データの不完全性に対して堅牢なIoTベースの機械学習システムを構築することが重要である。
ENAMLEは、同時に欠落するデータの影響を緩和するための、能動的でエネルギーに配慮した技術である。
本研究では,ENAMLEのエネルギー効率を示す2つの異なるデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2024-03-15T15:01:48Z) - Low-Frequency Load Identification using CNN-BiLSTM Attention Mechanism [0.0]
非侵入負荷モニタリング(Non-Inrusive Load Monitoring, NILM)は、効率的な電力消費管理のための確立された技術である。
本稿では,畳み込みニューラルネットワーク(CNN)と双方向長短期記憶(BILSTM)を組み合わせたハイブリッド学習手法を提案する。
CNN-BILSTMモデルは、時間的(時間的)と空間的(位置的)の両方の特徴を抽出し、アプライアンスレベルでのエネルギー消費パターンを正確に識別することができる。
論文 参考訳(メタデータ) (2023-11-14T21:02:27Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
ノードレベルのグラフ異常検出(GAD)は、医学、ソーシャルネットワーク、eコマースなどの分野におけるグラフ構造化データから異常ノードを特定する上で重要な役割を果たす。
本稿では,GADの効率を向上させるために,PREM (preprocessing and Matching) という簡単な手法を提案する。
我々のアプローチは、強力な異常検出機能を維持しながら、GADを合理化し、時間とメモリ消費を削減します。
論文 参考訳(メタデータ) (2023-10-18T02:59:57Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Physics-Informed Neural Networks for Material Model Calibration from
Full-Field Displacement Data [0.0]
本研究では,実環境下でのフルフィールド変位と大域力データからモデルのキャリブレーションを行うためのPINNを提案する。
拡張PINNは、実験的な1次元データと合成フルフィールド変位データの両方から材料パラメータを識別できることを実証した。
論文 参考訳(メタデータ) (2022-12-15T11:01:32Z) - Federated Learning with Correlated Data: Taming the Tail for Age-Optimal
Industrial IoT [55.62157530259969]
本稿では,ピークAoI要求に基づくセンサの送信電力最小化と待ち時間に対する確率的制約について検討する。
本稿では,センサのトレーニングデータ間の相関を考慮した局所モデル選択手法を提案する。
数値計算の結果,送信電力,ピークAoI,遅延尾部分布のトレードオフが示された。
論文 参考訳(メタデータ) (2021-08-17T08:38:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。