論文の概要: Better than classical? The subtle art of benchmarking quantum machine learning models
- arxiv url: http://arxiv.org/abs/2403.07059v2
- Date: Thu, 14 Mar 2024 11:02:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-16 01:01:27.423918
- Title: Better than classical? The subtle art of benchmarking quantum machine learning models
- Title(参考訳): 古典よりも良いのか?量子機械学習モデルをベンチマークする微妙な技術
- Authors: Joseph Bowles, Shahnawaz Ahmed, Maria Schuld,
- Abstract要約: 古典的なシミュレーションによるベンチマークモデルは、ノイズフリーハードウェアが利用可能になる前に量子機械学習におけるアイデアを判断する主要な方法の1つである。
我々はPennyLaneのソフトウェアフレームワークをベースとしたオープンソースパッケージを開発し、大規模な研究を行っている。
我々は、160個の個別データセットを作成するために使用される6つのバイナリ分類タスクに対して、12の一般的な量子機械学習モデルを体系的にテストした。
- 参考スコア(独自算出の注目度): 0.27309692684728604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Benchmarking models via classical simulations is one of the main ways to judge ideas in quantum machine learning before noise-free hardware is available. However, the huge impact of the experimental design on the results, the small scales within reach today, as well as narratives influenced by the commercialisation of quantum technologies make it difficult to gain robust insights. To facilitate better decision-making we develop an open-source package based on the PennyLane software framework and use it to conduct a large-scale study that systematically tests 12 popular quantum machine learning models on 6 binary classification tasks used to create 160 individual datasets. We find that overall, out-of-the-box classical machine learning models outperform the quantum classifiers. Moreover, removing entanglement from a quantum model often results in as good or better performance, suggesting that "quantumness" may not be the crucial ingredient for the small learning tasks considered here. Our benchmarks also unlock investigations beyond simplistic leaderboard comparisons, and we identify five important questions for quantum model design that follow from our results.
- Abstract(参考訳): 古典的なシミュレーションによるベンチマークモデルは、ノイズフリーハードウェアが利用可能になる前に量子機械学習におけるアイデアを判断する主要な方法の1つである。
しかし、実験的な設計の成果に対する大きな影響、現在の到達範囲内の小さなスケール、そして量子技術の商業化に影響された物語は、堅牢な洞察を得ることを困難にしている。
より良い意思決定を容易にするために、PennyLaneソフトウェアフレームワークに基づいたオープンソースパッケージを開発し、160個の個別データセットを作成するために使用される6つのバイナリ分類タスクに対して、12の一般的な量子機械学習モデルを体系的にテストする大規模な研究を実施する。
全体として、古典的な機械学習モデルは量子分類器よりも優れています。
さらに、量子モデルから絡み合いを取り除くことは、しばしば良いあるいは良いパフォーマンスをもたらすので、ここで考慮される小さな学習タスクにとって「量子性」が重要な要素ではないことを示唆している。
私たちのベンチマークは、単純なリーダーボード比較以上の調査も解き、結果から続く量子モデル設計に関する5つの重要な疑問を特定します。
関連論文リスト
- Entanglement-induced provable and robust quantum learning advantages [0.0]
我々は、表現性、推論速度、トレーニング効率の観点から、ノイズロストで無条件の量子学習の利点を厳格に確立する。
我々の証明は情報理論であり、この優位性の起源を示唆している。
論文 参考訳(メタデータ) (2024-10-04T02:39:07Z) - Quantum Hamiltonian Embedding of Images for Data Reuploading Classifiers [0.9374652839580181]
最初の考慮事項の1つは、量子機械学習モデル自体の設計である。
最近の研究は、スピードアップによる量子アドバンテージが量子機械学習の正しい目標かどうかを疑問視し始めた。
本稿では,古典的なディープラーニングアルゴリズムの設計を量子ニューラルネットワークの設計に取り入れることで,代替手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T06:31:22Z) - Shadows of quantum machine learning [2.236957801565796]
トレーニング中にのみ量子リソースを必要とする量子モデルの新たなクラスを導入し、トレーニングされたモデルの展開は古典的である。
このモデルのクラスは古典的に展開された量子機械学習において普遍的であることを証明している。
論文 参考訳(メタデータ) (2023-05-31T18:00:02Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Fitting a Collider in a Quantum Computer: Tackling the Challenges of
Quantum Machine Learning for Big Datasets [0.0]
この課題に対処するために、特徴とデータプロトタイプの選択手法が研究された。
グリッドサーチが行われ、量子機械学習モデルが訓練され、古典的な浅層機械学習手法に対してベンチマークされた。
量子アルゴリズムの性能は、大規模なデータセットを使用しても、古典的なアルゴリズムに匹敵することがわかった。
論文 参考訳(メタデータ) (2022-11-06T22:45:37Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Quantum Machine Learning with SQUID [64.53556573827525]
分類問題に対するハイブリッド量子古典アルゴリズムを探索するオープンソースフレームワークであるScaled QUantum IDentifier (SQUID)を提案する。
本稿では、一般的なMNISTデータセットから標準バイナリ分類問題にSQUIDを使用する例を示す。
論文 参考訳(メタデータ) (2021-04-30T21:34:11Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
我々は,古典的データを量子状態に効率よくロードし,距離推定を行う手法を用いて,量子近接Centroid分類器を設計する。
MNIST手書き桁データセットの古典的最寄りのセントロイド分類器の精度と8次元合成データの最大100%の精度とを一致させ,11量子ビットトラップイオン量子マシン上で実験的に実証した。
論文 参考訳(メタデータ) (2020-12-08T01:10:30Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z) - Power of data in quantum machine learning [2.1012068875084964]
データから学習する古典機械によって、古典的に計算が難しい問題を簡単に予測できることが示される。
本稿では,フォールトトレラントシステムにおける学習問題に対して,単純かつ厳密な量子スピードアップを実現する量子モデルを提案する。
論文 参考訳(メタデータ) (2020-11-03T19:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。