論文の概要: Entanglement-induced provable and robust quantum learning advantages
- arxiv url: http://arxiv.org/abs/2410.03094v1
- Date: Fri, 4 Oct 2024 02:39:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 03:56:19.548297
- Title: Entanglement-induced provable and robust quantum learning advantages
- Title(参考訳): 絡み合いによる証明可能で堅牢な量子学習の利点
- Authors: Haimeng Zhao, Dong-Ling Deng,
- Abstract要約: 我々は、表現性、推論速度、トレーニング効率の観点から、ノイズロストで無条件の量子学習の利点を厳格に確立する。
我々の証明は情報理論であり、この優位性の起源を示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing holds the unparalleled potentials to enhance, speed up or innovate machine learning. However, an unambiguous demonstration of quantum learning advantage has not been achieved so far. Here, we rigorously establish a noise-robust, unconditional quantum learning advantage in terms of expressivity, inference speed, and training efficiency, compared to commonly-used classical machine learning models. Our proof is information-theoretic and pinpoints the origin of this advantage: quantum entanglement can be used to reduce the communication required by non-local machine learning tasks. In particular, we design a fully classical task that can be solved with unit accuracy by a quantum model with a constant number of variational parameters using entanglement resources, whereas commonly-used classical models must scale at least linearly with the size of the task to achieve a larger-than-exponentially-small accuracy. We further show that the quantum model can be trained with constant time and a number of samples inversely proportional to the problem size. We prove that this advantage is robust against constant depolarization noise. We show through numerical simulations that even though the classical models can have improved performance as their sizes are increased, they would suffer from overfitting. The constant-versus-linear separation, bolstered by the overfitting problem, makes it possible to demonstrate the quantum advantage with relatively small system sizes. We demonstrate, through both numerical simulations and trapped-ion experiments on IonQ Aria, the desired quantum-classical learning separation. Our results provide a valuable guide for demonstrating quantum learning advantages in practical applications with current noisy intermediate-scale quantum devices.
- Abstract(参考訳): 量子コンピューティングは、機械学習の強化、高速化、革新のための非並列ポテンシャルを持っている。
しかし、量子学習の優位性の明白な実証は、今のところ達成されていない。
ここでは,従来の機械学習モデルと比較して,表現性,推論速度,トレーニング効率の面で,ノイズロストな非条件量子学習の優位性を厳格に確立する。
量子絡み合いは、非ローカル機械学習タスクで必要とされる通信を減らすために用いられる。
特に、エンタングルメント資源を用いた変動パラメータの一定数の量子モデルを用いて、単位精度で解くことができる完全古典的タスクを設計する。
さらに、量子モデルは一定時間で訓練でき、多くのサンプルは問題の大きさに逆比例することを示した。
この利点は、一定偏極雑音に対して頑健であることを示す。
シミュレーションにより,従来のモデルではサイズが大きくなるにつれて性能が向上するが,オーバーフィッティングに悩まされることを示した。
オーバーフィッティング問題によって強化された定数対線形分離により、比較的小さなシステムサイズで量子上の優位性を示すことができる。
我々は,量子古典的学習分離法であるIonQ Ariaの数値シミュレーションとトラップイオン実験を併用して実証した。
この結果は,現在ノイズの多い中間規模量子デバイスを用いた実用的な応用において,量子学習の優位性を実証するための貴重なガイドを提供する。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Shadows of quantum machine learning [2.236957801565796]
トレーニング中にのみ量子リソースを必要とする量子モデルの新たなクラスを導入し、トレーニングされたモデルの展開は古典的である。
このモデルのクラスは古典的に展開された量子機械学習において普遍的であることを証明している。
論文 参考訳(メタデータ) (2023-05-31T18:00:02Z) - Quantumness and Learning Performance in Reservoir Computing with a Single Oscillator [0.0]
量子非線形モデルは、古典的非線形発振器と比較して学習性能においてより効果的であることを示す。
量子性と性能の関係を,幅広い初期状態を用いて検討する。
論文 参考訳(メタデータ) (2023-04-07T03:37:55Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
量子計算を古典的な結果によって補う手法を提案する。
予測の利点を生かして、新しいタイプの量子測度がもたらされる。
予測量子測定では、古典計算と量子計算の結果の組み合わせは最後にのみ起こる。
論文 参考訳(メタデータ) (2022-09-12T15:47:44Z) - Classical surrogates for quantum learning models [0.7734726150561088]
本稿では,訓練された量子学習モデルから効率的に得られる古典的モデルである古典的サロゲートの概念を紹介する。
我々は、よく解析された再アップロードモデルの大規模なクラスが古典的なサロゲートを持つことを示す。
論文 参考訳(メタデータ) (2022-06-23T14:37:02Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Enhancing Generative Models via Quantum Correlations [1.6099403809839032]
確率分布から抽出したサンプルを用いた生成モデリングは教師なし機械学習の強力なアプローチである。
このような量子相関が生成モデリングの強力な資源となることを理論的に示す。
この分離を標準的な機械学習データセットで数値的にテストし、実用的な問題に耐えることを示します。
論文 参考訳(メタデータ) (2021-01-20T22:57:22Z) - Power of data in quantum machine learning [2.1012068875084964]
データから学習する古典機械によって、古典的に計算が難しい問題を簡単に予測できることが示される。
本稿では,フォールトトレラントシステムにおける学習問題に対して,単純かつ厳密な量子スピードアップを実現する量子モデルを提案する。
論文 参考訳(メタデータ) (2020-11-03T19:00:01Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。