Efficient Knowledge Deletion from Trained Models through Layer-wise
Partial Machine Unlearning
- URL: http://arxiv.org/abs/2403.07611v1
- Date: Tue, 12 Mar 2024 12:49:47 GMT
- Title: Efficient Knowledge Deletion from Trained Models through Layer-wise
Partial Machine Unlearning
- Authors: Vinay Chakravarthi Gogineni and Esmaeil S. Nadimi
- Abstract summary: This paper introduces a novel class of machine unlearning algorithms.
First method is partial amnesiac unlearning, integration of layer-wise pruning with amnesiac unlearning.
Second method assimilates layer-wise partial-updates into label-flipping and optimization-based unlearning.
- Score: 2.3496568239538083
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine unlearning has garnered significant attention due to its ability to
selectively erase knowledge obtained from specific training data samples in an
already trained machine learning model. This capability enables data holders to
adhere strictly to data protection regulations. However, existing unlearning
techniques face practical constraints, often causing performance degradation,
demanding brief fine-tuning post unlearning, and requiring significant storage.
In response, this paper introduces a novel class of machine unlearning
algorithms. First method is partial amnesiac unlearning, integration of
layer-wise pruning with amnesiac unlearning. In this method, updates made to
the model during training are pruned and stored, subsequently used to forget
specific data from trained model. The second method assimilates layer-wise
partial-updates into label-flipping and optimization-based unlearning to
mitigate the adverse effects of data deletion on model efficacy. Through a
detailed experimental evaluation, we showcase the effectiveness of proposed
unlearning methods. Experimental results highlight that the partial amnesiac
unlearning not only preserves model efficacy but also eliminates the necessity
for brief post fine-tuning, unlike conventional amnesiac unlearning. Moreover,
employing layer-wise partial updates in label-flipping and optimization-based
unlearning techniques demonstrates superiority in preserving model efficacy
compared to their naive counterparts.
Related papers
- Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - A More Practical Approach to Machine Unlearning [0.0]
Machine unlearning is the ability to remove the influence of specific data points from a trained model.
The embedding layer in GPT-2 is crucial for effective unlearning.
Fuzzy matching techniques shift the model to a new optimum, while iterative unlearning provides a more complete modality.
arXiv Detail & Related papers (2024-06-13T17:59:06Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
Machine Unlearning is the process of selectively discarding information designated to specific sets or classes of data from a pre-trained model.
We propose a methodology tailored for the purposeful elimination of information linked to a specific class of data from a pre-trained classification network.
Our novel approach, termed textbfPartially-Blinded Unlearning (PBU), surpasses existing state-of-the-art class unlearning methods, demonstrating superior effectiveness.
arXiv Detail & Related papers (2024-03-24T17:33:22Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - Federated Unlearning via Active Forgetting [24.060724751342047]
We propose a novel federated unlearning framework based on incremental learning.
Our framework differs from existing federated unlearning methods that rely on approximate retraining or data influence estimation.
arXiv Detail & Related papers (2023-07-07T03:07:26Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.