A More Practical Approach to Machine Unlearning
- URL: http://arxiv.org/abs/2406.09391v1
- Date: Thu, 13 Jun 2024 17:59:06 GMT
- Title: A More Practical Approach to Machine Unlearning
- Authors: David Zagardo,
- Abstract summary: Machine unlearning is the ability to remove the influence of specific data points from a trained model.
The embedding layer in GPT-2 is crucial for effective unlearning.
Fuzzy matching techniques shift the model to a new optimum, while iterative unlearning provides a more complete modality.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning models often incorporate vast amounts of data, raising significant privacy concerns. Machine unlearning, the ability to remove the influence of specific data points from a trained model, addresses these concerns. This paper explores practical methods for implementing machine unlearning, focusing on a first-epoch gradient-ascent approach. Key findings include: 1. Single vs. Multi-Epoch Unlearning: First-epoch gradient unlearning is more effective than multi-epoch gradients. 2. Layer-Based Unlearning: The embedding layer in GPT-2 is crucial for effective unlearning. Gradients from the output layers (11 and 12) have no impact. Efficient unlearning can be achieved using only the embedding layer, halving space complexity. 3. Influence Functions & Scoring: Techniques like Hessian Vector Product and the dot product of activations and tensors are used for quantifying unlearning. 4. Gradient Ascent Considerations: Calibration is necessary to avoid overexposing the model to specific data points during unlearning, which could prematurely terminate the process. 5. Fuzzy Matching vs. Iterative Unlearning: Fuzzy matching techniques shift the model to a new optimum, while iterative unlearning provides a more complete modality. Our empirical evaluation confirms that first-epoch gradient ascent for machine unlearning is more effective than whole-model gradient ascent. These results highlight the potential of machine unlearning for enhancing data privacy and compliance with regulations such as GDPR and CCPA. The study underscores the importance of formal methods to comprehensively evaluate the unlearning process.
Related papers
- Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Alignment Calibration: Machine Unlearning for Contrastive Learning under Auditing [33.418062986773606]
We first propose the framework of Machine Unlearning for Contrastive learning (MUC) and adapting existing methods.
We observe that several methods are mediocre unlearners and existing auditing tools may not be sufficient for data owners to validate the unlearning effects in contrastive learning.
We propose a novel method called Alignment (AC) by explicitly considering the properties of contrastive learning and optimizing towards novel metrics to easily verify unlearning.
arXiv Detail & Related papers (2024-06-05T19:55:45Z) - Efficient Knowledge Deletion from Trained Models through Layer-wise
Partial Machine Unlearning [2.3496568239538083]
This paper introduces a novel class of machine unlearning algorithms.
First method is partial amnesiac unlearning, integration of layer-wise pruning with amnesiac unlearning.
Second method assimilates layer-wise partial-updates into label-flipping and optimization-based unlearning.
arXiv Detail & Related papers (2024-03-12T12:49:47Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
Key challenge in unlearning is forgetting the necessary data in a timely manner, while preserving model performance.
In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.
We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.