Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Pre-training Framework
- URL: http://arxiv.org/abs/2403.07636v4
- Date: Sun, 31 Mar 2024 07:42:17 GMT
- Title: Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Pre-training Framework
- Authors: Vu Minh Hieu Phan, Yutong Xie, Yuankai Qi, Lingqiao Liu, Liyang Liu, Bowen Zhang, Zhibin Liao, Qi Wu, Minh-Son To, Johan W. Verjans,
- Abstract summary: Medical vision language pre-training has emerged as a frontier of research, enabling zero-shot pathological recognition.
Due to the complex semantics of biomedical texts, current methods struggle to align medical images with key pathological findings in unstructured reports.
This is achieved by consulting a large language model and medical experts.
Ours improves the accuracy of recent methods by up to 8.56% and 17.26% for seen and unseen categories, respectively.
- Score: 43.453943987647015
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical vision language pre-training (VLP) has emerged as a frontier of research, enabling zero-shot pathological recognition by comparing the query image with the textual descriptions for each disease. Due to the complex semantics of biomedical texts, current methods struggle to align medical images with key pathological findings in unstructured reports. This leads to the misalignment with the target disease's textual representation. In this paper, we introduce a novel VLP framework designed to dissect disease descriptions into their fundamental aspects, leveraging prior knowledge about the visual manifestations of pathologies. This is achieved by consulting a large language model and medical experts. Integrating a Transformer module, our approach aligns an input image with the diverse elements of a disease, generating aspect-centric image representations. By consolidating the matches from each aspect, we improve the compatibility between an image and its associated disease. Additionally, capitalizing on the aspect-oriented representations, we present a dual-head Transformer tailored to process known and unknown diseases, optimizing the comprehensive detection efficacy. Conducting experiments on seven downstream datasets, ours improves the accuracy of recent methods by up to 8.56% and 17.26% for seen and unseen categories, respectively. Our code is released at https://github.com/HieuPhan33/MAVL.
Related papers
- Knowledge-enhanced Visual-Language Pretraining for Computational Pathology [68.6831438330526]
We consider the problem of visual representation learning for computational pathology, by exploiting large-scale image-text pairs gathered from public resources.
We curate a pathology knowledge tree that consists of 50,470 informative attributes for 4,718 diseases requiring pathology diagnosis from 32 human tissues.
arXiv Detail & Related papers (2024-04-15T17:11:25Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
We present a novel language-tied self-supervised learning framework, Hierarchical Language-tied Self-Supervision (HLSS) for histopathology images.
Our resulting model achieves state-of-the-art performance on two medical imaging benchmarks, OpenSRH and TCGA datasets.
arXiv Detail & Related papers (2024-03-21T17:58:56Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
We propose a novel framework leveraging domain-specific medical knowledge as guiding signals to integrate language information into the visual domain through image-text contrastive learning.
Our model includes global contrastive learning with our designed divergence encoder, local token-knowledge-patch alignment contrastive learning, and knowledge-guided category-level contrastive learning with expert knowledge.
Notably, MLIP surpasses state-of-the-art methods even with limited annotated data, highlighting the potential of multimodal pre-training in advancing medical representation learning.
arXiv Detail & Related papers (2024-02-03T05:48:50Z) - Text-guided Foundation Model Adaptation for Pathological Image
Classification [40.45252665455015]
We propose to connect image and text Embeddings (CITE) to enhance pathological image classification.
CITE injects text insights gained from language models pre-trained with a broad range of biomedical texts, leading to adapt foundation models towards pathological image understanding.
arXiv Detail & Related papers (2023-07-27T14:44:56Z) - Towards a Visual-Language Foundation Model for Computational Pathology [5.72536252929528]
We introduce CONtrastive learning from Captions for Histopathology (CONCH)
CONCH is a visual-language foundation model developed using diverse sources of histopathology images, biomedical text, and task-agnostic pretraining.
It is evaluated on a suite of 13 diverse benchmarks, achieving state-of-the-art performance on histology image classification, segmentation, captioning, text-to-image and image-to-text retrieval.
arXiv Detail & Related papers (2023-07-24T16:13:43Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - NEEDED: Introducing Hierarchical Transformer to Eye Diseases Diagnosis [5.608716029921948]
We present an effective automatic eye disease diagnosis framework, NEEDED.
A preprocessing module is integrated to improve the density and quality of information.
For the diagnosis part, we propose an attention-based predictor that enables traceable diagnosis by obtaining disease-specific information.
arXiv Detail & Related papers (2022-12-27T08:37:57Z) - Multi-Granularity Cross-modal Alignment for Generalized Medical Visual
Representation Learning [24.215619918283462]
We present a novel framework for learning medical visual representations directly from paired radiology reports.
Our framework harnesses the naturally exhibited semantic correspondences between medical image and radiology reports at three different levels.
arXiv Detail & Related papers (2022-10-12T09:31:39Z) - Cross Chest Graph for Disease Diagnosis with Structural Relational
Reasoning [2.7148274921314615]
Locating lesions is important in the computer-aided diagnosis of X-ray images.
General weakly-supervised methods have failed to consider the characteristics of X-ray images.
We propose the Cross-chest Graph (CCG), which improves the performance of automatic lesion detection.
arXiv Detail & Related papers (2021-01-22T08:24:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.