Improving Medical Visual Representation Learning with Pathological-level Cross-Modal Alignment and Correlation Exploration
- URL: http://arxiv.org/abs/2506.10573v1
- Date: Thu, 12 Jun 2025 11:01:57 GMT
- Title: Improving Medical Visual Representation Learning with Pathological-level Cross-Modal Alignment and Correlation Exploration
- Authors: Jun Wang, Lixing Zhu, Xiaohan Yu, Abhir Bhalerao, Yulan He,
- Abstract summary: We propose a novel pathological-level cross-modal alignment (PCMA) approach to maximize the consistency of pathology observations from both images and reports.<n>The PCMA module operates independently of any external disease annotations, enhancing the generalizability and robustness of our methods.<n> Experimental results demonstrate that our proposed framework achieves new state-of-the-art performance on multiple downstream tasks.
- Score: 21.260659596426184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning medical visual representations from image-report pairs through joint learning has garnered increasing research attention due to its potential to alleviate the data scarcity problem in the medical domain. The primary challenges stem from the lengthy reports that feature complex discourse relations and semantic pathologies. Previous works have predominantly focused on instance-wise or token-wise cross-modal alignment, often neglecting the importance of pathological-level consistency. This paper presents a novel framework PLACE that promotes the Pathological-Level Alignment and enriches the fine-grained details via Correlation Exploration without additional human annotations. Specifically, we propose a novel pathological-level cross-modal alignment (PCMA) approach to maximize the consistency of pathology observations from both images and reports. To facilitate this, a Visual Pathology Observation Extractor is introduced to extract visual pathological observation representations from localized tokens. The PCMA module operates independently of any external disease annotations, enhancing the generalizability and robustness of our methods. Furthermore, we design a proxy task that enforces the model to identify correlations among image patches, thereby enriching the fine-grained details crucial for various downstream tasks. Experimental results demonstrate that our proposed framework achieves new state-of-the-art performance on multiple downstream tasks, including classification, image-to-text retrieval, semantic segmentation, object detection and report generation.
Related papers
- Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models [9.76070837929117]
Existing alignment methods prioritize separation between disease classes over segregation of fine-grained pathology attributes.<n>Here, we propose MedTrim, a novel method that enhances image-text alignment through multimodal triplet learning.<n>Our demonstrations indicate that MedTrim improves performance in downstream retrieval and classification tasks compared to state-of-the-art alignment methods.
arXiv Detail & Related papers (2025-04-22T14:17:51Z) - Leveraging Vision-Language Embeddings for Zero-Shot Learning in Histopathology Images [7.048241543461529]
We propose a novel framework called Multi-Resolution Prompt-guided Hybrid Embedding (MR-PHE) to address these challenges in zero-shot histopathology image classification.<n>We introduce a hybrid embedding strategy that integrates global image embeddings with weighted patch embeddings.<n>A similarity-based patch weighting mechanism assigns attention-like weights to patches based on their relevance to class embeddings.
arXiv Detail & Related papers (2025-03-13T12:18:37Z) - MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease.<n>We present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention.<n>Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance.
arXiv Detail & Related papers (2025-03-01T07:02:30Z) - See Detail Say Clear: Towards Brain CT Report Generation via Pathological Clue-driven Representation Learning [12.40415847810958]
We introduce a Pathological Clue-driven Representation Learning (PCRL) model to build cross-modal representations based on pathological clues.
Specifically, we construct pathological clues from perspectives of segmented regions, pathological entities, and report themes.
To adapt the representations for the text generation task, we bridge the gap between representation learning and report generation by using a unified large language model (LLM) with task-tailored instructions.
arXiv Detail & Related papers (2024-09-29T12:08:20Z) - Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
Eye-gaze Guided Multi-modal Alignment (EGMA) framework harnesses eye-gaze data for better alignment of medical visual and textual features.
We conduct downstream tasks of image classification and image-text retrieval on four medical datasets.
arXiv Detail & Related papers (2024-03-19T03:59:14Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
We propose a novel framework leveraging domain-specific medical knowledge as guiding signals to integrate language information into the visual domain through image-text contrastive learning.
Our model includes global contrastive learning with our designed divergence encoder, local token-knowledge-patch alignment contrastive learning, and knowledge-guided category-level contrastive learning with expert knowledge.
Notably, MLIP surpasses state-of-the-art methods even with limited annotated data, highlighting the potential of multimodal pre-training in advancing medical representation learning.
arXiv Detail & Related papers (2024-02-03T05:48:50Z) - Dynamic Traceback Learning for Medical Report Generation [12.746275623663289]
This study proposes a novel multi-modal dynamic traceback learning framework (DTrace) for medical report generation.
We introduce a traceback mechanism to supervise the semantic validity of generated content and a dynamic learning strategy to adapt to various proportions of image and text input.
The proposed DTrace framework outperforms state-of-the-art methods for medical report generation.
arXiv Detail & Related papers (2024-01-24T07:13:06Z) - Cross-Modal Causal Intervention for Medical Report Generation [107.76649943399168]
Radiology Report Generation (RRG) is essential for computer-aided diagnosis and medication guidance.<n> generating accurate lesion descriptions remains challenging due to spurious correlations from visual-linguistic biases.<n>We propose a two-stage framework named CrossModal Causal Representation Learning (CMCRL)<n> Experiments on IU-Xray and MIMIC-CXR show that our CMCRL pipeline significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-03-16T07:23:55Z) - Multi-Granularity Cross-modal Alignment for Generalized Medical Visual
Representation Learning [24.215619918283462]
We present a novel framework for learning medical visual representations directly from paired radiology reports.
Our framework harnesses the naturally exhibited semantic correspondences between medical image and radiology reports at three different levels.
arXiv Detail & Related papers (2022-10-12T09:31:39Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.