論文の概要: Equipping Computational Pathology Systems with Artifact Processing
Pipelines: A Showcase for Computation and Performance Trade-offs
- arxiv url: http://arxiv.org/abs/2403.07743v2
- Date: Wed, 13 Mar 2024 11:20:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 10:59:26.150635
- Title: Equipping Computational Pathology Systems with Artifact Processing
Pipelines: A Showcase for Computation and Performance Trade-offs
- Title(参考訳): 人工物処理による計算病理システムの構築
Pipelines: 計算とパフォーマンスのトレードオフのためのショーケース
- Authors: Neel Kanwal, Farbod Khoraminia, Umay Kiraz, Andres Mosquera-Zamudio,
Carlos Monteagudo, Emiel A.M. Janssen, Tahlita C.M. Zuiverloon, Chunmig Rong,
and Kjersti Engan
- Abstract要約: 損傷組織, ぼかし, 折りたたみ組織, 気泡, 組織学的に無関係な血液を含む5つの重要な人工物を検出するための専門家(MoE)の混合手法を提案する。
2つのMoEと2つのマルチクラスモデルであるDCNNとビジョントランスフォーマーを用いたDLパイプラインを開発した。
提案されたMoEは86.15%のF1と97.93%の感度スコアを持ち、ViTを用いたMoEよりも推論の計算コストが低い。
- 参考スコア(独自算出の注目度): 0.7226586370054761
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Histopathology is a gold standard for cancer diagnosis under a microscopic
examination. However, histological tissue processing procedures result in
artifacts, which are ultimately transferred to the digitized version of glass
slides, known as whole slide images (WSIs). Artifacts are diagnostically
irrelevant areas and may result in wrong deep learning (DL) algorithms
predictions. Therefore, detecting and excluding artifacts in the computational
pathology (CPATH) system is essential for reliable automated diagnosis. In this
paper, we propose a mixture of experts (MoE) scheme for detecting five notable
artifacts, including damaged tissue, blur, folded tissue, air bubbles, and
histologically irrelevant blood from WSIs. First, we train independent binary
DL models as experts to capture particular artifact morphology. Then, we
ensemble their predictions using a fusion mechanism. We apply probabilistic
thresholding over the final probability distribution to improve the sensitivity
of the MoE. We developed DL pipelines using two MoEs and two multiclass models
of state-of-the-art deep convolutional neural networks (DCNNs) and vision
transformers (ViTs). DCNNs-based MoE and ViTs-based MoE schemes outperformed
simpler multiclass models and were tested on datasets from different hospitals
and cancer types, where MoE using DCNNs yielded the best results. The proposed
MoE yields 86.15% F1 and 97.93% sensitivity scores on unseen data, retaining
less computational cost for inference than MoE using ViTs. This best
performance of MoEs comes with relatively higher computational trade-offs than
multiclass models. The proposed artifact detection pipeline will not only
ensure reliable CPATH predictions but may also provide quality control.
- Abstract(参考訳): 病理組織学は、顕微鏡検査によるがん診断における金の基準である。
しかし、組織組織処理は結果として人工物となり、最終的にはガラススライドのデジタル版(全スライド画像(WSI))に転送される。
アーティファクトは診断的に無関係な領域であり、誤った深層学習(DL)アルゴリズムの予測をもたらす可能性がある。
したがって、CPATH(Computer pathology)システムにおけるアーティファクトの検出と排除は、信頼性の高い自動診断に不可欠である。
本稿では, 損傷組織, ぼかし, 折りたたみ組織, 気泡, 組織学的に無関係な血液を含む5つの重要な遺物を検出するための専門家(MoE)の混合手法を提案する。
まず、独立したバイナリDLモデルを専門家として訓練し、特定のアーティファクト形態を捉える。
そして,融合機構を用いてそれらの予測をアンサンブルする。
最終確率分布に対して確率しきい値を適用し,MoEの感度を向上させる。
2つのMoEと2つのマルチクラスモデルであるDCNN(Deep Convolutional Neural Network)とビジョントランスフォーマー(ViT)を用いてDLパイプラインを開発した。
DCNN ベースの MoE と ViTs ベースの MoE スキームは、より単純なマルチクラスモデルよりも優れており、様々な病院やがんタイプのデータセットでテストされた。
提案されたMoEは86.15%のF1と97.93%の感度スコアを持ち、ViTを用いたMoEよりも推論の計算コストが低い。
このMoEsの最高の性能は、マルチクラスモデルよりも比較的高い計算トレードオフを持つ。
提案したアーティファクト検出パイプラインは、信頼性の高いCPATH予測を保証するだけでなく、品質管理も提供する。
関連論文リスト
- Phikon-v2, A large and public feature extractor for biomarker prediction [42.52549987351643]
我々は、DINOv2を用いて視覚変換器を訓練し、このモデルの1つのイテレーションを公開して、Phikon-v2と呼ばれるさらなる実験を行う。
Phikon-v2は、公開されている組織学のスライドをトレーニングしながら、以前リリースしたモデル(Phikon)を上回り、プロプライエタリなデータでトレーニングされた他の病理学基盤モデル(FM)と同等に動作します。
論文 参考訳(メタデータ) (2024-09-13T20:12:29Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Early Diagnosis of Retinal Blood Vessel Damage via Deep Learning-Powered
Collective Intelligence Models [0.3670422696827525]
Swarmアルゴリズムのパワーは、タスクに最適なモデルを提供するために、畳み込み層、プーリング層、正規化層の様々な組み合わせを探すために使用される。
最高のTDCNモデルは90.3%、AUC ROCは0.956、Cohenスコアは0.967である。
論文 参考訳(メタデータ) (2022-10-17T21:38:38Z) - Spatiotemporal Feature Learning Based on Two-Step LSTM and Transformer
for CT Scans [2.3682456328966115]
我々は、新型コロナウイルスの症状分類を徹底的に行うための、新しい、効果的、2段階のアプローチを提案する。
まず,従来のバックボーンネットワークにより,CTスキャンにおける各スライスの意味的特徴埋め込みを抽出する。
そこで我々は,時間的特徴学習を扱うために,LSTMとTransformerベースのサブネットワークを提案する。
論文 参考訳(メタデータ) (2022-07-04T16:59:05Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Learning Interpretable Microscopic Features of Tumor by Multi-task
Adversarial CNNs To Improve Generalization [1.7371375427784381]
既存のCNNモデルはブラックボックスとして機能し、医師が重要な診断機能がモデルによって使用されることを保証しない。
ここでは,マルチタスクと敵の損失を両立させる不確実性に基づく重み付けの組み合わせをエンド・ツー・エンドで学習することにより,病理的特徴に焦点を合わせることを推奨する。
AUC 0.89 (0.01) がベースラインであるAUC 0.86 (0.005) に対して最も高い値を示した。
論文 参考訳(メタデータ) (2020-08-04T12:10:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。