論文の概要: Fairness Feedback Loops: Training on Synthetic Data Amplifies Bias
- arxiv url: http://arxiv.org/abs/2403.07857v1
- Date: Tue, 12 Mar 2024 17:48:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 19:48:15.231300
- Title: Fairness Feedback Loops: Training on Synthetic Data Amplifies Bias
- Title(参考訳): fairness feedback loops: バイアスを増幅する合成データのトレーニング
- Authors: Sierra Wyllie, Ilia Shumailov, Nicolas Papernot
- Abstract要約: モデル誘導分散シフト(MIDS)は、以前のモデルが代々のモデルに対して汚染された新しいモデルトレーニングセットを出力するときに発生する。
我々は,複数世代にわたるMIDSの追跡を可能にするフレームワークを導入し,性能,公平性,少数化グループ表現の損失につながることを確認した。
これらの否定的な結果にもかかわらず、モデルがデータエコシステムにおけるポジティブで意図的な介入にどのように使用されるかを特定します。
- 参考スコア(独自算出の注目度): 47.79659355705916
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Model-induced distribution shifts (MIDS) occur as previous model outputs
pollute new model training sets over generations of models. This is known as
model collapse in the case of generative models, and performative prediction or
unfairness feedback loops for supervised models. When a model induces a
distribution shift, it also encodes its mistakes, biases, and unfairnesses into
the ground truth of its data ecosystem. We introduce a framework that allows us
to track multiple MIDS over many generations, finding that they can lead to
loss in performance, fairness, and minoritized group representation, even in
initially unbiased datasets. Despite these negative consequences, we identify
how models might be used for positive, intentional, interventions in their data
ecosystems, providing redress for historical discrimination through a framework
called algorithmic reparation (AR). We simulate AR interventions by curating
representative training batches for stochastic gradient descent to demonstrate
how AR can improve upon the unfairnesses of models and data ecosystems subject
to other MIDS. Our work takes an important step towards identifying,
mitigating, and taking accountability for the unfair feedback loops enabled by
the idea that ML systems are inherently neutral and objective.
- Abstract(参考訳): モデル誘導分散シフト(MIDS)は、以前のモデルが代々のモデルに対して汚染された新しいモデルトレーニングセットを出力するときに発生する。
これは生成モデルの場合のモデル崩壊、および教師付きモデルに対する実行予測や不公平なフィードバックループとして知られている。
モデルが分散シフトを誘導すると、そのミスやバイアス、不公平さをデータエコシステムの基本真実にエンコードする。
複数の世代にわたるMIDSの追跡を可能にするフレームワークを導入し、当初は偏りのないデータセットであっても、性能、公平性、少数化グループ表現の損失につながる可能性があることを発見した。
このような否定的な結果にもかかわらず、データエコシステムにおけるポジティブ、意図的、介入にモデルがどのように使われるかを特定し、アルゴリズムリパレーション(ar)と呼ばれるフレームワークを通じて歴史的差別の対処を提供する。
我々は、確率勾配降下のための代表訓練バッチをキュレートしてAR介入をシミュレートし、他のMIDSの対象となるモデルやデータエコシステムの不公平性に対してARがいかに改善できるかを示す。
私たちの研究は、MLシステムが本質的に中立で客観的であるという考え方によって実現された不公平なフィードバックループを特定し、緩和し、説明責任を負うための重要な一歩を踏み出します。
関連論文リスト
- Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - Root Causing Prediction Anomalies Using Explainable AI [3.970146574042422]
本稿では,機械学習モデルにおける根源的性能劣化に対する説明可能なAI(XAI)の新たな応用法を提案する。
単一機能の破損は、カスケード機能、ラベル、コンセプトドリフトを引き起こす可能性がある。
我々は、パーソナライズされた広告に使用されるモデルの信頼性を向上させるために、この手法をうまく応用した。
論文 参考訳(メタデータ) (2024-03-04T19:38:50Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - A Probabilistic Fluctuation based Membership Inference Attack for Diffusion Models [32.15773300068426]
メンバーシップ推論攻撃(MIA)は、機械学習モデルのトレーニングセットに、モデルをクエリすることでレコードが存在するかどうかを特定する。
PFAMI(Probabilistic Fluctuation Assessing Membership Inference Attack)を提案する。
PFAMIは最高のベースラインと比較して攻撃成功率(ASR)を約27.9%向上させることができる。
論文 参考訳(メタデータ) (2023-08-23T14:00:58Z) - Fair GANs through model rebalancing for extremely imbalanced class
distributions [5.463417677777276]
本稿では,既存のバイアス付きGANからGAN(unbiased generative adversarial Network)を構築するためのアプローチを提案する。
Flickr Faces High Quality (FFHQ) データセットを用いて、人種的公平性をトレーニングしながら、StyleGAN2モデルの結果を示す。
また,不均衡なCIFAR10データセットに適用することで,我々のアプローチをさらに検証する。
論文 参考訳(メタデータ) (2023-08-16T19:20:06Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
データや学習アルゴリズムを変更することなく、機械学習モデルの公平性を向上する方法を示す。
異なる集団間の傾向のばらつきと、学習モデルと少数民族間の連続的な傾向は、データドリフトと類似している。
このドリフトを解決するための2つの戦略(モデル分割とリウィーディング)を探索し、基礎となるデータに対するモデル全体の適合性を改善することを目的としている。
論文 参考訳(メタデータ) (2023-03-30T17:30:42Z) - Bias-inducing geometries: an exactly solvable data model with fairness
implications [13.690313475721094]
我々は、正確に解決可能なデータ不均衡の高次元モデルを導入する。
この合成フレームワークで訓練された学習モデルの典型的特性を解析的に解き放つ。
フェアネス評価によく用いられる観測対象の正確な予測値を得る。
論文 参考訳(メタデータ) (2022-05-31T16:27:57Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
本稿では,FAIRIFという2段階の学習アルゴリズムを提案する。
サンプル重みが計算される再重み付きデータセットの損失を最小限に抑える。
FAIRIFは、様々な種類のバイアスに対して、フェアネスとユーティリティのトレードオフを良くしたモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T05:14:48Z) - Unifying Epidemic Models with Mixtures [28.771032745045428]
新型コロナウイルスのパンデミックは、感染モデルに対する強固な理解の必要性を強調している。
本稿では2つのアプローチをブリッジする単純な混合モデルを提案する。
モデルは非機械的であるが、ネットワーク化されたSIRフレームワークに基づくプロセスの自然な結果として現れることを示す。
論文 参考訳(メタデータ) (2022-01-07T19:42:05Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
そこで、データ多様性を最適化可能な目的として明示的にモデル化するContrastive Model Inversionを提案します。
我々の主な観察では、同じ量のデータの制約の下では、高いデータの多様性は、通常より強いインスタンス識別を示す。
CIFAR-10, CIFAR-100, Tiny-ImageNetを用いた実験により, 生成したデータを知識蒸留に使用する場合, CMIは極めて優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-05-18T15:13:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。