ProtDAT: A Unified Framework for Protein Sequence Design from Any Protein Text Description
- URL: http://arxiv.org/abs/2412.04069v1
- Date: Thu, 05 Dec 2024 11:05:46 GMT
- Title: ProtDAT: A Unified Framework for Protein Sequence Design from Any Protein Text Description
- Authors: Xiao-Yu Guo, Yi-Fan Li, Yuan Liu, Xiaoyong Pan, Hong-Bin Shen,
- Abstract summary: We propose a de novo fine-grained framework capable of designing proteins from any descriptive text input.
Prot DAT builds upon the inherent characteristics of protein data to unify sequences and text as a cohesive whole rather than separate entities.
Experimental results demonstrate that Prot DAT achieves the state-of-the-art performance in protein sequence generation, excelling in rationality, functionality, structural similarity, and validity.
- Score: 7.198238666986253
- License:
- Abstract: Protein design has become a critical method in advancing significant potential for various applications such as drug development and enzyme engineering. However, protein design methods utilizing large language models with solely pretraining and fine-tuning struggle to capture relationships in multi-modal protein data. To address this, we propose ProtDAT, a de novo fine-grained framework capable of designing proteins from any descriptive protein text input. ProtDAT builds upon the inherent characteristics of protein data to unify sequences and text as a cohesive whole rather than separate entities. It leverages an innovative multi-modal cross-attention, integrating protein sequences and textual information for a foundational level and seamless integration. Experimental results demonstrate that ProtDAT achieves the state-of-the-art performance in protein sequence generation, excelling in rationality, functionality, structural similarity, and validity. On 20,000 text-sequence pairs from Swiss-Prot, it improves pLDDT by 6%, TM-score by 0.26, and reduces RMSD by 1.2 {\AA}, highlighting its potential to advance protein design.
Related papers
- EvoLlama: Enhancing LLMs' Understanding of Proteins via Multimodal Structure and Sequence Representations [28.298740080002077]
Current Large Language Models (LLMs) for understanding proteins primarily treats amino acid sequences as a text modality.
EvoLlama is a framework that connects a structure-based encoder, a sequence-based protein encoder and an LLM for protein understanding.
Our experiments show that EvoLlama's protein understanding capabilities have been significantly enhanced.
arXiv Detail & Related papers (2024-12-16T10:01:33Z) - ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding [22.610060675922536]
We introduce ProteinGPT, a state-of-the-art multi-modal protein chat system.
ProteinGPT seamlessly integrates protein sequence and structure encoders with linear projection layers for precise representation adaptation.
We train a large-scale dataset of 132,092 proteins with annotations, and optimize the instruction-tuning process using GPT-4o.
Experiments show that ProteinGPT can produce promising responses to proteins and their corresponding questions.
arXiv Detail & Related papers (2024-08-21T06:16:22Z) - ProtT3: Protein-to-Text Generation for Text-based Protein Understanding [88.43323947543996]
Language Models (LMs) excel in understanding textual descriptions of proteins.
Protein Language Models (PLMs) can understand and convert protein data into high-quality representations, but struggle to process texts.
We introduce ProtT3, a framework for Protein-to-Text Generation for Text-based Protein Understanding.
arXiv Detail & Related papers (2024-05-21T08:06:13Z) - Annotation-guided Protein Design with Multi-Level Domain Alignment [39.79713846491306]
We propose Protein- Alignment Generation, PAAG, a multi-modality protein design framework.
It integrates the textual annotations extracted from protein database for controllable generation in sequence space.
Specifically, PAAG can explicitly generate proteins containing specific domains conditioned on the corresponding domain annotations.
arXiv Detail & Related papers (2024-04-18T09:37:54Z) - ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction [54.132290875513405]
The prediction of protein-protein interactions (PPIs) is crucial for understanding biological functions and diseases.
Previous machine learning approaches to PPI prediction mainly focus on direct physical interactions.
We propose a novel framework ProLLM that employs an LLM tailored for PPI for the first time.
arXiv Detail & Related papers (2024-03-30T05:32:42Z) - ProtLLM: An Interleaved Protein-Language LLM with Protein-as-Word Pre-Training [82.37346937497136]
We propose a versatile cross-modal large language model (LLM) for both protein-centric and protein-language tasks.
ProtLLM features a unique dynamic protein mounting mechanism, enabling it to handle complex inputs.
By developing a specialized protein vocabulary, we equip the model with the capability to predict not just natural language but also proteins from a vast pool of candidates.
arXiv Detail & Related papers (2024-02-28T01:29:55Z) - A Text-guided Protein Design Framework [106.79061950107922]
We propose ProteinDT, a multi-modal framework that leverages textual descriptions for protein design.
ProteinDT consists of three subsequent steps: ProteinCLAP which aligns the representation of two modalities, a facilitator that generates the protein representation from the text modality, and a decoder that creates the protein sequences from the representation.
We quantitatively verify the effectiveness of ProteinDT on three challenging tasks: (1) over 90% accuracy for text-guided protein generation; (2) best hit ratio on 12 zero-shot text-guided protein editing tasks; (3) superior performance on four out of six protein property prediction benchmarks.
arXiv Detail & Related papers (2023-02-09T12:59:16Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
We propose a novel structure-aware protein self-supervised learning method to capture structural information of proteins.
In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information.
We identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme.
arXiv Detail & Related papers (2022-04-06T02:18:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.