Towards Independence Criterion in Machine Unlearning of Features and
Labels
- URL: http://arxiv.org/abs/2403.08124v1
- Date: Tue, 12 Mar 2024 23:21:09 GMT
- Title: Towards Independence Criterion in Machine Unlearning of Features and
Labels
- Authors: Ling Han, Nanqing Luo, Hao Huang, Jing Chen, Mary-Anne Hartley
- Abstract summary: This work delves into the complexities of machine unlearning in the face of distributional shifts.
Our research introduces a novel approach that leverages influence functions and principles of distributional independence to address these challenges.
Our method not only facilitates efficient data removal but also dynamically adjusts the model to preserve its generalization capabilities.
- Score: 9.790684060172662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work delves into the complexities of machine unlearning in the face of
distributional shifts, particularly focusing on the challenges posed by
non-uniform feature and label removal. With the advent of regulations like the
GDPR emphasizing data privacy and the right to be forgotten, machine learning
models face the daunting task of unlearning sensitive information without
compromising their integrity or performance. Our research introduces a novel
approach that leverages influence functions and principles of distributional
independence to address these challenges. By proposing a comprehensive
framework for machine unlearning, we aim to ensure privacy protection while
maintaining model performance and adaptability across varying distributions.
Our method not only facilitates efficient data removal but also dynamically
adjusts the model to preserve its generalization capabilities. Through
extensive experimentation, we demonstrate the efficacy of our approach in
scenarios characterized by significant distributional shifts, making
substantial contributions to the field of machine unlearning. This research
paves the way for developing more resilient and adaptable unlearning
techniques, ensuring models remain robust and accurate in the dynamic landscape
of data privacy and machine learning.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Zero-shot Class Unlearning via Layer-wise Relevance Analysis and Neuronal Path Perturbation [11.174705227990241]
Machine unlearning is a technique that removes specific data influences from trained models without the need for extensive retraining.
This paper presents a novel approach to machine unlearning by employing Layer-wise Relevance Analysis and Neuronal Path Perturbation.
Our method balances machine unlearning performance and model utility by identifying and perturbing highly relevant neurons, thereby achieving effective unlearning.
arXiv Detail & Related papers (2024-10-31T07:37:04Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
We present a novel unlearning mechanism designed to remove the impact of specific data samples from a neural network.
In achieving this goal, we crafted a novel loss function tailored to eliminate privacy-sensitive information from weights and activation values of the target model.
Our results showcase the superior performance of our approach in terms of unlearning efficacy and latency as well as the fidelity of the primary task.
arXiv Detail & Related papers (2024-07-01T00:20:26Z) - Self-Distilled Disentangled Learning for Counterfactual Prediction [49.84163147971955]
We propose the Self-Distilled Disentanglement framework, known as $SD2$.
Grounded in information theory, it ensures theoretically sound independent disentangled representations without intricate mutual information estimator designs.
Our experiments, conducted on both synthetic and real-world datasets, confirm the effectiveness of our approach.
arXiv Detail & Related papers (2024-06-09T16:58:19Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Self-consistent Validation for Machine Learning Electronic Structure [81.54661501506185]
Method integrates machine learning with self-consistent field methods to achieve both low validation cost and interpret-ability.
This, in turn, enables exploration of the model's ability with active learning and instills confidence in its integration into real-world studies.
arXiv Detail & Related papers (2024-02-15T18:41:35Z) - FRAMU: Attention-based Machine Unlearning using Federated Reinforcement
Learning [16.86560475992975]
We introduce Attention-based Machine Unlearning using Federated Reinforcement Learning (FRAMU)
FRAMU incorporates adaptive learning mechanisms, privacy preservation techniques, and optimization strategies.
Our experiments, conducted on both single-modality and multi-modality datasets, revealed that FRAMU significantly outperformed baseline models.
arXiv Detail & Related papers (2023-09-19T03:13:17Z) - Machine Unlearning: Solutions and Challenges [21.141664917477257]
Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation.
To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific training data points' influence on trained models.
This paper provides a comprehensive taxonomy and analysis of the solutions in machine unlearning.
arXiv Detail & Related papers (2023-08-14T10:45:51Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
We design a dynamic mechanism using offline reinforcement learning algorithms.
Our algorithm is based on the pessimism principle and only requires a mild assumption on the coverage of the offline data set.
arXiv Detail & Related papers (2022-05-05T05:44:26Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.