論文の概要: Causal Graph Neural Networks for Wildfire Danger Prediction
- arxiv url: http://arxiv.org/abs/2403.08414v1
- Date: Wed, 13 Mar 2024 10:58:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 14:43:33.331296
- Title: Causal Graph Neural Networks for Wildfire Danger Prediction
- Title(参考訳): 火災危険予測のための因果グラフニューラルネットワーク
- Authors: Shan Zhao, Ioannis Prapas, Ilektra Karasante, Zhitong Xiong, Ioannis
Papoutsis, Gustau Camps-Valls, Xiao Xiang Zhu
- Abstract要約: 森林火災の予報は、気象条件、植生の種類、人的活動など様々な要因の複雑な相互作用のため、非常に難しいことが知られている。
ディープラーニングモデルは、データから直接学習することで、この複雑さを扱うことを約束している。
私たちは正しい理由のために正しいモデルが必要だと主張する。つまり、学んだ暗黙のルールは、山火事を駆動する基盤となるプロセスによって基礎づけられるべきである。
- 参考スコア(独自算出の注目度): 25.12733727343395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wildfire forecasting is notoriously hard due to the complex interplay of
different factors such as weather conditions, vegetation types and human
activities. Deep learning models show promise in dealing with this complexity
by learning directly from data. However, to inform critical decision making, we
argue that we need models that are right for the right reasons; that is, the
implicit rules learned should be grounded by the underlying processes driving
wildfires. In that direction, we propose integrating causality with Graph
Neural Networks (GNNs) that explicitly model the causal mechanism among complex
variables via graph learning. The causal adjacency matrix considers the
synergistic effect among variables and removes the spurious links from highly
correlated impacts. Our methodology's effectiveness is demonstrated through
superior performance forecasting wildfire patterns in the European boreal and
mediterranean biome. The gain is especially prominent in a highly imbalanced
dataset, showcasing an enhanced robustness of the model to adapt to regime
shifts in functional relationships. Furthermore, SHAP values from our trained
model further enhance our understanding of the model's inner workings.
- Abstract(参考訳): 森林火災の予報は、気象条件、植生の種類、人的活動など様々な要因の複雑な相互作用のため、非常に難しいことが知られている。
ディープラーニングモデルは、データから直接学習することで、この複雑さを扱うことを約束している。
しかし、批判的な決定を下すには、正しい理由のために正しいモデルが必要である、と我々は主張する。
そこで我々は,グラフ学習を通じて複雑な変数間の因果関係を明示的にモデル化するグラフニューラルネットワーク(GNN)と因果関係を統合することを提案する。
因果親和性行列は変数間の相乗効果を考慮し、高相関な影響からスプリアスリンクを除去する。
本手法の有効性は,ヨーロッパ産シロイヌナズナおよび地中海産シロイヌナズナの森林火災パターンの優れた予測によって実証される。
この利得は、特に高度に不均衡なデータセットにおいて顕著であり、機能的関係のレギュラーシフトに適応するためにモデルの堅牢性を高めたことを示している。
さらに、トレーニングされたモデルからのSHAP値は、モデルの内部動作の理解をさらに高めます。
関連論文リスト
- Explainable AI Integrated Feature Engineering for Wildfire Prediction [1.7934287771173114]
本研究では,山火事の予測に関係した分類・回帰作業について,各種機械学習アルゴリズムの徹底的な評価を行った。
様々な種類の山火事を分類するために、XGBoostモデルは正確さと堅牢性で他よりも優れていた。
ランダムフォレスト回帰モデルでは、山火事の影響範囲を予測する上で、優れた結果が得られた。
論文 参考訳(メタデータ) (2024-04-01T21:12:44Z) - Explainable Global Wildfire Prediction Models using Graph Neural
Networks [2.2389592950633705]
本稿では,グローバルな山火事予測のための革新的なグラフニューラルネットワーク(GNN)モデルを提案する。
我々のアプローチは、地球温暖化や山火事のデータをグラフ表現に変換し、ヌル海洋データロケーションのような課題に対処します。
論文 参考訳(メタデータ) (2024-02-11T10:44:41Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
得られた知識を有向非巡回因果グラフの形で公開することを提案する。
また、この因果発見プロセスを状態依存的に設計し、潜在因果グラフのダイナミクスをモデル化する。
提案するフレームワークは,動的因果探索モジュール,因果符号化モジュール,予測モジュールの3つの部分から構成され,エンドツーエンドで訓練される。
論文 参考訳(メタデータ) (2023-09-30T20:59:42Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
トレーニンググラフとテストグラフの分散シフトを考慮せずにグラフニューラルネットワーク(GNN)を提案する。
このような環境では、GNNは、たとえ素早い相関であるとしても、予測のためのトレーニングセットに存在する微妙な統計的相関を利用する傾向がある。
本稿では,スプリアス相関の影響を排除するため,StableGNNと呼ばれる一般的な因果表現フレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-20T18:57:18Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Understanding Neural Abstractive Summarization Models via Uncertainty [54.37665950633147]
seq2seq抽象要約モデルは、自由形式の方法でテキストを生成する。
モデルのトークンレベルの予測のエントロピー、すなわち不確実性について検討する。
要約とテキスト生成モデルをより広範囲に解析する上で,不確実性は有用であることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:57:27Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
因果発見は人間の認知の中心にある。
本研究では,ビデオの因果発見の課題を,地層構造を監督せずにエンドツーエンドで検討する。
論文 参考訳(メタデータ) (2020-07-01T17:29:57Z) - Causal Inference with Deep Causal Graphs [0.0]
パラメトリック因果モデリング技術は、カウンターファクト推定の機能を提供することはめったにない。
Deep Causal Graphsは、因果分布をモデル化するニューラルネットワークに必要な機能の抽象的な仕様である。
複雑な相互作用をモデル化する上で,その表現力を示し,機械学習の説明可能性と公正性を示す。
論文 参考訳(メタデータ) (2020-06-15T13:03:33Z) - Resolving Spurious Correlations in Causal Models of Environments via
Interventions [2.836066255205732]
本稿では,強化学習環境の因果モデル推定の問題について考察する。
提案手法は,因果モデルにおける誤り発見のための介入を行うエージェントにインセンティブを与える報酬関数を設計する。
グリッドワールド環境における実験結果から,本手法はベースラインよりも因果モデルが優れていることが示された。
論文 参考訳(メタデータ) (2020-02-12T20:20:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。