論文の概要: Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research
- arxiv url: http://arxiv.org/abs/2403.08438v2
- Date: Tue, 19 Mar 2024 10:54:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 20:49:20.636277
- Title: Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research
- Title(参考訳): 再現性と幾何学的固有次元:グラフニューラルネットワークの研究
- Authors: Tobias Hille, Maximilian Stubbemann, Tom Hanika,
- Abstract要約: これらの努力に基づいて構築することは、マシンラーニングにおけるもうひとつの重要な課題、すなわち次元の呪いに向かっています。
本研究は,機械学習モデルが学習対象のデータセットの拡張次元にどのような影響を受けているのかを,本質的な次元の密接な関連概念を用いて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Difficulties in replication and reproducibility of empirical evidences in machine learning research have become a prominent topic in recent years. Ensuring that machine learning research results are sound and reliable requires reproducibility, which verifies the reliability of research findings using the same code and data. This promotes open and accessible research, robust experimental workflows, and the rapid integration of new findings. Evaluating the degree to which research publications support these different aspects of reproducibility is one goal of the present work. For this we introduce an ontology of reproducibility in machine learning and apply it to methods for graph neural networks. Building on these efforts we turn towards another critical challenge in machine learning, namely the curse of dimensionality, which poses challenges in data collection, representation, and analysis, making it harder to find representative data and impeding the training and inference processes. Using the closely linked concept of geometric intrinsic dimension we investigate to which extend the used machine learning models are influenced by the intrinsic dimension of the data sets they are trained on.
- Abstract(参考訳): 近年,機械学習研究における実証的証拠の複製と再現性の難しさが注目されている。
機械学習の研究結果が健全で信頼性の高いことを保証するには再現性が必要であり、同じコードとデータを使って研究結果の信頼性を検証する。
これにより、オープンでアクセス可能な研究、堅牢な実験ワークフロー、そして新しい発見の迅速な統合が促進される。
研究出版物がこれらの再現性の異なる側面をサポートする程度を評価することが,本研究の目標である。
そこで我々は,機械学習における再現性オントロジーを導入し,それをグラフニューラルネットワークの手法に適用する。
データ収集、表現、分析の課題を引き起こす次元の呪いによって、代表データを見つけにくくなり、トレーニングや推論プロセスの妨げになる。
幾何内在次元という密接な結びついた概念を用いて、使用する機械学習モデルの拡張は、トレーニングされたデータセットの内在次元に影響されるかを調べる。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Innovation and Word Usage Patterns in Machine Learning [1.3812010983144802]
機械学習の領域に現れた重要なテーマと基本的な概念を特定します。
研究貢献の斬新さと多様化を定量化するために、Kullback-Leibler Divergence 計量を用いる。
論文 参考訳(メタデータ) (2023-11-07T00:41:15Z) - Machine learning assisted exploration for affine Deligne-Lusztig
varieties [3.7863170254779335]
本稿では,ADLV(Affine Deligne-Lusztig variety)の幾何学を探索するために,機械学習支援フレームワークを活用した学際研究を提案する。
主な目的は, ADLVの既約成分の空白パターン, 寸法, 列挙について検討することである。
我々は、ある下界の次元に関する新たに特定された問題の完全な数学的証明を提供する。
論文 参考訳(メタデータ) (2023-08-22T11:12:53Z) - Homological Neural Networks: A Sparse Architecture for Multivariate
Complexity [0.0]
我々は,基礎となるデータのホモロジー構造上に構築された,疎密な高階グラフィカルアーキテクチャを特徴とする,新しいディープニューラルネットワークユニットを開発する。
その結果、この新しい設計の利点は、ごく少数のパラメータだけで最先端の機械学習モデルとディープラーニングモデルの結果を結び付けるか、克服することができる。
論文 参考訳(メタデータ) (2023-06-27T09:46:16Z) - A Survey on Few-Shot Class-Incremental Learning [11.68962265057818]
FSCIL(Few-shot class-incremental Learning)は、ディープニューラルネットワークが新しいタスクを学習する上で重要な課題である。
本稿では, FSCILに関する包括的調査を行う。
FSCILはコンピュータビジョンの様々な分野で大きな成果を上げている。
論文 参考訳(メタデータ) (2023-04-17T10:15:08Z) - Bridging Machine Learning and Sciences: Opportunities and Challenges [0.0]
機械学習の科学への応用は、近年、エキサイティングな進歩を遂げている。
近年,ディープ・ニューラルネットを用いたアウト・オブ・ディストリビューション検出は高次元データにおいて大きな進歩を遂げている。
我々は、データ普遍性、実験プロトコル、モデル堅牢性など、それらの適用可能性について批判的に考察する。
論文 参考訳(メタデータ) (2022-10-24T17:54:46Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Deep Learning for Community Detection: Progress, Challenges and
Opportunities [79.26787486888549]
この記事では、ディープニューラルネットワークにおける様々なフレームワーク、モデル、アルゴリズムの貢献について要約する。
この記事では、ディープニューラルネットワークにおける様々なフレームワーク、モデル、アルゴリズムの貢献について要約する。
論文 参考訳(メタデータ) (2020-05-17T11:22:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。