Negative Wigner function by decaying interaction from equilibrium
- URL: http://arxiv.org/abs/2403.08474v2
- Date: Sun, 19 May 2024 15:03:06 GMT
- Title: Negative Wigner function by decaying interaction from equilibrium
- Authors: Michal Kolář, Radim Filip,
- Abstract summary: We propose a conceptually different and more autonomous way to obtain negative Wigner function superposition states.
We demonstrate simultaneously detectable negative Wigner function and quantum coherence and their qualitative enhancement employing more qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Bosonic systems with negative Wigner function superposition states are fundamentally witnessing nonlinear quantum dynamics beyond linearized systems and, recently, have become essential resources of quantum technology with many applications. Typically, they appear due to sophisticated combination of external drives, nonlinear control, measurements or strong nonlinear dissipation of subsystems to an environment. Here, we propose a conceptually different and more autonomous way to obtain such states, avoiding these ingredients, using purely sudden interaction decay in the paradigmatic interacting qubit-oscillator system weakly coupled to bath at thermal equilibrium in a low-temperature limit. We demonstrate simultaneously detectable unconditional negative Wigner function and quantum coherence and their qualitative enhancement employing more qubits.
Related papers
- Generalized Gibbs ensembles in weakly interacting dissipative systems and digital quantum computers [0.0]
We propose using a digital quantum computer to showcase the activation of integrability.
Dissipation is realized by coupling system's qubits to periodically reset ancilla ones.
We derive the effective equations of motion for trotterized dynamics.
arXiv Detail & Related papers (2024-06-24T18:00:11Z) - Critical sensing with a single bosonic mode without boson-boson interactions [3.8795402651871984]
We propose a simple critical quantum sensing scheme that requires neither of these conditions.
The scheme can be realized in different systems, e.g., ion traps and superconducting circuits.
arXiv Detail & Related papers (2023-05-28T07:45:34Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Exact dynamics of non-additive environments in non-Markovian open
quantum systems [0.0]
We present a numerically-exact and efficient technique for tackling the problem of capturing multi-bath system dynamics.
We test the method by applying it to a simple model system that exhibits non-additive behaviour.
We uncover a new regime where the quantum Zeno effect leads to a fully mixed state of the electronic system.
arXiv Detail & Related papers (2021-09-17T10:08:37Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Non-equilibrium steady-states of memoryless quantum collision models [0.0]
We show that only a coupling Hamiltonian in the energy-preserving form drives the system to thermal equilibrium.
We characterize the specific form of system-environment interaction that drives the system to a steady-state exhibiting coherence in the energy eigenbasis.
arXiv Detail & Related papers (2020-01-06T19:00:01Z) - Nonequilibrium Nonlinear Open Quantum Systems I. Functional Perturbative
Analysis of a Weakly Anharmonic Oscillator [0.0]
We introduce a functional perturbative method for treating weakly nonlinear systems coupled with a quantum field bath.
We identify a fluctuation-dissipation relation based on the nonequilibrium dynamics of this nonlinear open quantum system.
The results presented here are useful for studying the nonequilibrium physical processes of nonlinear quantum systems such as heat transfer or electron transport.
arXiv Detail & Related papers (2019-12-30T03:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.