論文の概要: AIGCs Confuse AI Too: Investigating and Explaining Synthetic Image-induced Hallucinations in Large Vision-Language Models
- arxiv url: http://arxiv.org/abs/2403.08542v2
- Date: Tue, 3 Sep 2024 01:53:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 19:15:46.335465
- Title: AIGCs Confuse AI Too: Investigating and Explaining Synthetic Image-induced Hallucinations in Large Vision-Language Models
- Title(参考訳): AIGCもAIを混乱させる:大規模視覚言語モデルにおける合成画像誘発幻覚の調査と説明
- Authors: Yifei Gao, Jiaqi Wang, Zhiyu Lin, Jitao Sang,
- Abstract要約: 我々は、AI合成画像によるLVLM(Large Vision-Language Models)の悪化する幻覚現象を強調した。
注目すべきは、AIGC textbfhallucination biasに光を当てることである: 合成画像によって誘導される物体幻覚は、より多い量で特徴づけられる。
我々は,Q-formerとLinearプロジェクタについて検討した結果,合成画像は視覚投射後のトークン偏差を呈し,幻覚バイアスを増幅することがわかった。
- 参考スコア(独自算出の注目度): 37.04195231708092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution of Artificial Intelligence Generated Contents (AIGCs) is advancing towards higher quality. The growing interactions with AIGCs present a new challenge to the data-driven AI community: While AI-generated contents have played a crucial role in a wide range of AI models, the potential hidden risks they introduce have not been thoroughly examined. Beyond human-oriented forgery detection, AI-generated content poses potential issues for AI models originally designed to process natural data. In this study, we underscore the exacerbated hallucination phenomena in Large Vision-Language Models (LVLMs) caused by AI-synthetic images. Remarkably, our findings shed light on a consistent AIGC \textbf{hallucination bias}: the object hallucinations induced by synthetic images are characterized by a greater quantity and a more uniform position distribution, even these synthetic images do not manifest unrealistic or additional relevant visual features compared to natural images. Moreover, our investigations on Q-former and Linear projector reveal that synthetic images may present token deviations after visual projection, thereby amplifying the hallucination bias.
- Abstract(参考訳): 人工知能生成コンテンツ(AIGC)の進化は、より高い品質に向かって進んでいる。
AI生成コンテンツは、幅広いAIモデルにおいて重要な役割を担っているが、彼らが導入する潜在的な隠れたリスクは、十分に検討されていない。
人間指向の偽造検出以外にも、AI生成コンテンツは、もともと自然データを処理するように設計されたAIモデルに潜在的な問題を引き起こす。
本研究では,AI合成画像によるLVLM(Large Vision-Language Models)の高次幻覚現象について述べる。
合成画像によって誘導される物体幻覚は、より多く、より均一な位置分布によって特徴づけられるが、これらの合成画像でさえ、自然画像と比較して非現実的あるいは付加的な視覚的特徴を示さない。
さらに,Q-formerとLinearプロジェクタについて検討した結果,合成画像は視覚投射後のトークン偏差を呈し,幻覚バイアスを増幅することがわかった。
関連論文リスト
- A Sanity Check for AI-generated Image Detection [49.08585395873425]
本稿では,AIによる画像検出の課題が解決されたかどうかの検査を行う。
既存の手法の一般化を定量化するために,Chameleonデータセット上で,既製のAI生成画像検出器を9つ評価した。
複数の専門家が同時に視覚的アーチファクトやノイズパターンを抽出するAI生成画像検出装置(AID)を提案する。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - Exploring the Naturalness of AI-Generated Images [59.04528584651131]
我々は、AI生成画像の視覚的自然性をベンチマークし、評価する第一歩を踏み出した。
本研究では,人間の評価を整列するAGIの自然性を自動予測するジョイント・オブジェクト・イメージ・ナチュラルネス評価器(JOINT)を提案する。
その結果,JOINTは自然性評価において,より主観的に一貫した結果を提供するために,ベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2023-12-09T06:08:09Z) - Invisible Relevance Bias: Text-Image Retrieval Models Prefer AI-Generated Images [67.18010640829682]
我々は,AI生成画像がテキスト画像検索モデルに目に見えない関連性バイアスをもたらすことを示す。
検索モデルのトレーニングデータにAI生成画像を含めると、目に見えない関連性バイアスが増す。
本研究では,目に見えない関連バイアスを軽減するための効果的なトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T16:22:58Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Augmenting medical image classifiers with synthetic data from latent
diffusion models [12.077733447347592]
我々は,潜伏拡散モデルが皮膚疾患の画像を生成することを実証した。
我々は,複数の生成戦略を用いて生成した458,920個の合成画像の新しいデータセットを生成し,解析する。
論文 参考訳(メタデータ) (2023-08-23T22:34:49Z) - DeepfakeArt Challenge: A Benchmark Dataset for Generative AI Art Forgery and Data Poisoning Detection [57.51313366337142]
悪意ある目的のために生成的AIを使用することについて懸念が高まっている。
生成AIを用いた視覚コンテンツ合成の領域では、画像偽造とデータ中毒が重要な関心事となっている。
DeepfakeArt Challenge(ディープフェイクアートチャレンジ)は、AIアートのジェネレーションとデータ中毒検出のための機械学習アルゴリズムの構築を支援するために設計された、大規模なチャレンジベンチマークデータセットである。
論文 参考訳(メタデータ) (2023-06-02T05:11:27Z) - The Beauty or the Beast: Which Aspect of Synthetic Medical Images
Deserves Our Focus? [1.6305276867803995]
医療AIアルゴリズムのトレーニングには、大量の正確なラベル付きデータセットが必要である。
深層生成モデルから生成された合成画像は、データの不足問題を緩和するのに役立つが、それらの有効性は実世界の画像への忠実さに依存している。
論文 参考訳(メタデータ) (2023-05-03T09:09:54Z) - ViT-DAE: Transformer-driven Diffusion Autoencoder for Histopathology
Image Analysis [4.724009208755395]
高品質な病理画像合成のための視覚変換器(ViT)と拡散オートエンコーダを統合したViT-DAEを提案する。
提案手法は, 実写画像生成におけるGAN法とバニラDAE法より優れている。
論文 参考訳(メタデータ) (2023-04-03T15:00:06Z) - CIFAKE: Image Classification and Explainable Identification of
AI-Generated Synthetic Images [7.868449549351487]
本稿では,コンピュータビジョンによるAI生成画像の認識能力を高めることを提案する。
写真が本物かAIによって生成されるかに関して、バイナリ分類問題として存在する2つのデータセット。
本研究では,畳み込みニューラルネットワーク(CNN)を用いて画像をリアルとフェイクの2つのカテゴリに分類する。
論文 参考訳(メタデータ) (2023-03-24T16:33:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。