CINA: Conditional Implicit Neural Atlas for Spatio-Temporal
Representation of Fetal Brains
- URL: http://arxiv.org/abs/2403.08550v1
- Date: Wed, 13 Mar 2024 14:02:42 GMT
- Title: CINA: Conditional Implicit Neural Atlas for Spatio-Temporal
Representation of Fetal Brains
- Authors: Maik Dannecker, Vanessa Kyriakopoulou, Lucilio Cordero-Grande, Anthony
N. Price, Joseph V. Hajnal, Daniel Rueckert
- Abstract summary: CINA learns a general representation of the fetal brain and encodes subject specific information into latent code.
After training, CINA can construct a faithful atlas with tissue probability maps of the fetal brain for any gestational age.
CINA demonstrates superior accuracy for neurotypical brains and pathological brains with ventricullyomega.
- Score: 10.512435553279346
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a conditional implicit neural atlas (CINA) for spatio-temporal
atlas generation from Magnetic Resonance Images (MRI) of the neurotypical and
pathological fetal brain, that is fully independent of affine or non-rigid
registration. During training, CINA learns a general representation of the
fetal brain and encodes subject specific information into latent code. After
training, CINA can construct a faithful atlas with tissue probability maps of
the fetal brain for any gestational age (GA) and anatomical variation covered
within the training domain. Thus, CINA is competent to represent both,
neurotypical and pathological brains. Furthermore, a trained CINA model can be
fit to brain MRI of unseen subjects via test-time optimization of the latent
code. CINA can then produce probabilistic tissue maps tailored to a particular
subject. We evaluate our method on a total of 198 T2 weighted MRI of normal and
abnormal fetal brains from the dHCP and FeTA datasets. We demonstrate CINA's
capability to represent a fetal brain atlas that can be flexibly conditioned on
GA and on anatomical variations like ventricular volume or degree of cortical
folding, making it a suitable tool for modeling both neurotypical and
pathological brains. We quantify the fidelity of our atlas by means of tissue
segmentation and age prediction and compare it to an established baseline. CINA
demonstrates superior accuracy for neurotypical brains and pathological brains
with ventriculomegaly. Moreover, CINA scores a mean absolute error of 0.23
weeks in fetal brain age prediction, further confirming an accurate
representation of fetal brain development.
Related papers
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Cas-DiffCom: Cascaded diffusion model for infant longitudinal
super-resolution 3D medical image completion [47.83003164569194]
We propose a two-stage cascaded diffusion model, Cas-DiffCom, for dense and longitudinal 3D infant brain MRI completion and super-resolution.
Experiment results validate that Cas-DiffCom achieves both individual consistency and high fidelity in longitudinal infant brain image completion.
arXiv Detail & Related papers (2024-02-21T12:54:40Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline.
NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age.
NeuroVNN adds anatomical interpretability to brain age and has a scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas.
arXiv Detail & Related papers (2024-02-12T14:46:31Z) - FetMRQC: a robust quality control system for multi-centric fetal brain MRI [33.08151493899017]
We present FetMRQC, an open-source machine-learning framework for automated image quality assessment and quality control.
FetMRQC extracts an ensemble of quality metrics from unprocessed anatomical MRI and combines them to predict experts' ratings.
We validate our framework on a pioneeringly large and diverse dataset of more than 1600 manually rated fetal brain T2-weighted images.
arXiv Detail & Related papers (2023-11-08T15:59:41Z) - Explainable Brain Age Prediction using coVariance Neural Networks [94.81523881951397]
We propose an explanation-driven and anatomically interpretable framework for brain age prediction using cortical thickness features.
Specifically, our brain age prediction framework extends beyond the coarse metric of brain age gap in Alzheimer's disease (AD)
We make two important observations: VNNs can assign anatomical interpretability to elevated brain age gap in AD by identifying contributing brain regions.
arXiv Detail & Related papers (2023-05-27T22:28:25Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
We propose an explainable geometric deep network dubbed NeuroExplainer.
NeuroExplainer is used to uncover altered infant cortical development patterns associated with preterm birth.
arXiv Detail & Related papers (2023-01-01T12:48:12Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormer is a general hybrid Transformer architecture for brain disease classification with single fMRI volume.
BrainFormer is constructed by modeling the local cues within each voxel with 3D convolutions.
We evaluate BrainFormer on five independently acquired datasets including ABIDE, ADNI, MPILMBB, ADHD-200 and ECHO.
arXiv Detail & Related papers (2022-08-05T07:54:10Z) - CAS-Net: Conditional Atlas Generation and Brain Segmentation for Fetal
MRI [10.127399319119911]
We propose a novel network structure that can simultaneously generate conditional atlases and predict brain tissue segmentation.
The proposed method is trained and evaluated on 253 subjects from the developing Human Connectome Project.
arXiv Detail & Related papers (2022-05-17T11:23:02Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z) - Local semi-supervised approach to brain tissue classification in child
brain MRI [0.0]
Most segmentation methods in child brain MRI are supervised and are based on global intensity probabilistic computation of major brain structures.
In this paper, we consider classification into major tissue classes (white matter and grey matter) and the cerebrospinal fluid.
We show that our method improves detection of the tissue classes by its comparison to state-of-the-art classification techniques known as Partial Volume Estimation.
arXiv Detail & Related papers (2020-05-20T06:43:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.