QCSHQD: Quantum computing as a service for Hybrid classical-quantum software development: A Vision
- URL: http://arxiv.org/abs/2403.08663v3
- Date: Fri, 12 Apr 2024 05:55:56 GMT
- Title: QCSHQD: Quantum computing as a service for Hybrid classical-quantum software development: A Vision
- Authors: Maryam Tavassoli Sabzevari, Matteo Esposito, Arif Ali Khan, Davide Taibi,
- Abstract summary: This study presents a blueprint for QCSHQD, designed to democratize access to QC resources for classical developers.
The vision of QCSHQD paves the way for groundbreaking innovations by addressing key challenges of hybridization between classical and quantum computers.
- Score: 4.6103649840975365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Computing (QC) is transitioning from theoretical frameworks to an indispensable powerhouse of computational capability, resulting in extensive adoption across both industrial and academic domains. QC presents exceptional advantages, including unparalleled processing speed and the potential to solve complex problems beyond the capabilities of classical computers. Nevertheless, academic researchers and industry practitioners encounter various challenges in harnessing the benefits of this technology. The limited accessibility of QC resources for classical developers, and a general lack of domain knowledge and expertise, represent insurmountable barrier, hence to address these challenges, we introduce a framework- Quantum Computing as a Service for Hybrid Classical-Quantum Software Development (QCSHQD), which leverages service-oriented strategies. Our framework comprises three principal components: an Integrated Development Environment (IDE) for user interaction, an abstraction layer dedicated to orchestrating quantum services, and a service provider responsible for executing services on quantum computer. This study presents a blueprint for QCSHQD, designed to democratize access to QC resources for classical developers who want to seamless harness QC power. The vision of QCSHQD paves the way for groundbreaking innovations by addressing key challenges of hybridization between classical and quantum computers.
Related papers
- Dependable Classical-Quantum Computer Systems Engineering [37.16076237842031]
This paper aims to identify integration challenges, anticipate failures, and foster a diverse co-design for HPC-QC systems.
The focus of this emerging inter-disciplinary effort is to develop engineering principles that ensure the dependability of hybrid systems.
arXiv Detail & Related papers (2024-08-20T01:57:17Z) - Advancing Quantum Software Engineering: A Vision of Hybrid Full-Stack Iterative Model [5.9478154558776435]
This paper introduces a vision for Quantum Software Develop- ment lifecycle.
It proposes a hybrid full-stack iterative model that integrates quantum and classical computing.
arXiv Detail & Related papers (2024-03-18T11:18:33Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Foundations of Quantum Federated Learning Over Classical and Quantum
Networks [59.121263013213756]
Quantum federated learning (QFL) is a novel framework that integrates the advantages of classical federated learning (FL) with the computational power of quantum technologies.
QFL can be deployed over both classical and quantum communication networks.
arXiv Detail & Related papers (2023-10-23T02:56:00Z) - Integration of Quantum Accelerators with High Performance Computing -- A
Review of Quantum Programming Tools [0.8477185635891722]
This study aims to characterize existing quantum programming tools (QPTs) from an HPC perspective.
It investigates if existing QPTs have the potential to be efficiently integrated with classical computing models.
This work structures a set of criteria into an analysis blueprint that enables HPC scientists to assess whether a QPT is suitable for the quantum-accelerated classical application.
arXiv Detail & Related papers (2023-09-12T12:24:12Z) - A Conceptual Architecture for a Quantum-HPC Middleware [1.82035221675293]
Quantum computing promises potential for science and industry by solving certain computationally complex problems faster than classical computers.
With the increasing scale, systems that facilitate the efficient coupling of quantum-classical computing are becoming critical.
arXiv Detail & Related papers (2023-08-12T16:48:56Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
Quantum cloud computing (QCC) offers a promising approach to efficiently provide quantum computing resources.
The fluctuations in user demand and quantum circuit requirements are challenging for efficient resource provisioning.
We propose a resource allocation model to provision quantum computing and networking resources.
arXiv Detail & Related papers (2023-07-25T00:38:46Z) - A Reference Architecture for Quantum Computing as a Service [0.0]
Quantum computers (QCs) aim to disrupt the statusquo of computing -- replacing traditional systems and platforms that are driven by digital circuits and modular software.
QCs that rely on quantum mechanics can achieve "quantum computational supremacy" over traditional, i.e., digital computing systems.
This research contributes by developing a reference architecture for enabling quantum computing as a service.
arXiv Detail & Related papers (2023-06-03T17:48:18Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Physics-Informed Quantum Communication Networks: A Vision Towards the
Quantum Internet [79.8886946157912]
We present a novel analysis of the performance of quantum communication networks (QCNs) in a physics-informed manner.
The need of the physics-informed approach is then assessed and its fundamental role in designing practical QCNs is analyzed.
We identify novel physics-informed performance metrics and controls that enable QCNs to leverage the state-of-the-art advancements in quantum technologies.
arXiv Detail & Related papers (2022-04-20T05:32:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.