Building a Software Stack for Quantum-HPC Integration
- URL: http://arxiv.org/abs/2503.01787v1
- Date: Mon, 03 Mar 2025 18:18:45 GMT
- Title: Building a Software Stack for Quantum-HPC Integration
- Authors: Amir Shehata, Peter Groszkowski, Thomas Naughton, Murali Gopalakrishnan Meena, Elaine Wong, Daniel Claudino, Rafael Ferreira da Silvaa, Thomas Beck,
- Abstract summary: We propose a hardware-agnostic software framework that supports both current intermediate-scale quantum devices and future fault-tolerant quantum computers.<n>The architecture includes a quantum gateway interface, standardized APIs for resource management, and robust scheduling mechanisms.<n>Key innovations include: (1) a unified resource management system that efficiently coordinates quantum and classical resources, (2) a flexible quantum programming interface that abstracts hardware-specific details, and (4) a comprehensive tool chain for quantum circuit optimization and execution.
- Score: 0.9360388224886863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive software stack architecture for integrating quantum computing (QC) capabilities with High-Performance Computing (HPC) environments. While quantum computers show promise as specialized accelerators for scientific computing, their effective integration with classical HPC systems presents significant technical challenges. We propose a hardware-agnostic software framework that supports both current noisy intermediate-scale quantum devices and future fault-tolerant quantum computers, while maintaining compatibility with existing HPC workflows. The architecture includes a quantum gateway interface, standardized APIs for resource management, and robust scheduling mechanisms to handle both simultaneous and interleaved quantum-classical workloads. Key innovations include: (1) a unified resource management system that efficiently coordinates quantum and classical resources, (2) a flexible quantum programming interface that abstracts hardware-specific details, (3) A Quantum Platform Manager API that simplifies the integration of various quantum hardware systems, and (4) a comprehensive tool chain for quantum circuit optimization and execution. We demonstrate our architecture through implementation of quantum-classical algorithms, including the variational quantum linear solver, showcasing the framework's ability to handle complex hybrid workflows while maximizing resource utilization. This work provides a foundational blueprint for integrating QC capabilities into existing HPC infrastructures, addressing critical challenges in resource management, job scheduling, and efficient data movement between classical and quantum resources.
Related papers
- Hardware-level Interfaces for Hybrid Quantum-Classical Computing Systems [0.4697760524661718]
Hybrid Quantum-Classical computing systems is neither straightforward nor standardized while crucial for unlocking the real potential of QCs.
This study focuses on hardware approaches that enable effective hybrid quantum-classical operation.
arXiv Detail & Related papers (2025-03-24T16:43:42Z) - SeQUeNCe GUI: An Extensible User Interface for Discrete Event Quantum Network Simulations [55.2480439325792]
SeQUeNCe is an open source simulator of quantum network communication.<n>We implement a graphical user interface which maintains the core principles of SeQUeNCe.
arXiv Detail & Related papers (2025-01-15T19:36:09Z) - QSteed: Quantum Software of Compilation for Supporting Real Quantum Device [20.400502031534007]
We present QSteed, a quantum compilation system that can be deployed on real quantum computing devices and quantum computing clusters.<n>It is designed to meet the challenges of effectively compiling quantum tasks and managing multiple quantum backends.
arXiv Detail & Related papers (2025-01-13T00:59:27Z) - Ecosystem-Agnostic Standardization of Quantum Runtime Architecture: Accelerating Utility in Quantum Computing [0.0]
This research covers all layers of Quantum Computing Optimization Middleware (QCOM)
It requires execution on real quantum hardware (QH)
There is a need for a widely adopted runtime platform (RP) driven by the open-source community.
arXiv Detail & Related papers (2024-09-26T16:43:07Z) - Multi-GPU-Enabled Hybrid Quantum-Classical Workflow in Quantum-HPC Middleware: Applications in Quantum Simulations [1.9922905420195367]
This study introduces an innovative distribution-aware Quantum-Classical-Quantum architecture.
It integrates cutting-edge quantum software framework works with high-performance classical computing resources.
It addresses challenges in quantum simulation for materials and condensed matter physics.
arXiv Detail & Related papers (2024-03-09T07:38:45Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - A Conceptual Architecture for a Quantum-HPC Middleware [1.82035221675293]
Quantum computing promises potential for science and industry by solving certain computationally complex problems faster than classical computers.
With the increasing scale, systems that facilitate the efficient coupling of quantum-classical computing are becoming critical.
arXiv Detail & Related papers (2023-08-12T16:48:56Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
Quantum cloud computing (QCC) offers a promising approach to efficiently provide quantum computing resources.
The fluctuations in user demand and quantum circuit requirements are challenging for efficient resource provisioning.
We propose a resource allocation model to provision quantum computing and networking resources.
arXiv Detail & Related papers (2023-07-25T00:38:46Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.