Procedural terrain generation with style transfer
- URL: http://arxiv.org/abs/2403.08782v1
- Date: Sun, 28 Jan 2024 14:22:27 GMT
- Title: Procedural terrain generation with style transfer
- Authors: Fabio Merizzi,
- Abstract summary: We introduce a new technique for the generation of terrain maps, exploiting a combination of procedural generation and Neural Style Transfer.
This fusion of algorithmic generation and neural processing holds the potential to produce terrains that are not only diverse but also closely aligned with the morphological characteristics of real-world landscapes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this study we introduce a new technique for the generation of terrain maps, exploiting a combination of procedural generation and Neural Style Transfer. We consider our approach to be a viable alternative to competing generative models, with our technique achieving greater versatility, lower hardware requirements and greater integration in the creative process of designers and developers. Our method involves generating procedural noise maps using either multi-layered smoothed Gaussian noise or the Perlin algorithm. We then employ an enhanced Neural Style transfer technique, drawing style from real-world height maps. This fusion of algorithmic generation and neural processing holds the potential to produce terrains that are not only diverse but also closely aligned with the morphological characteristics of real-world landscapes, with our process yielding consistent terrain structures with low computational cost and offering the capability to create customized maps. Numerical evaluations further validate our model's enhanced ability to accurately replicate terrain morphology, surpassing traditional procedural methods.
Related papers
- StyleRWKV: High-Quality and High-Efficiency Style Transfer with RWKV-like Architecture [29.178246094092202]
Style transfer aims to generate a new image preserving the content but with the artistic representation of the style source.
Most of the existing methods are based on Transformers or diffusion models, however, they suffer from quadratic computational complexity and high inference time.
We present a novel framework StyleRWKV, to achieve high-quality style transfer with limited memory usage and linear time complexity.
arXiv Detail & Related papers (2024-12-27T09:01:15Z) - STAR: Synthesis of Tailored Architectures [61.080157488857516]
We propose a new approach for the synthesis of tailored architectures (STAR)
Our approach combines a novel search space based on the theory of linear input-varying systems, supporting a hierarchical numerical encoding into architecture genomes. STAR genomes are automatically refined and recombined with gradient-free, evolutionary algorithms to optimize for multiple model quality and efficiency metrics.
Using STAR, we optimize large populations of new architectures, leveraging diverse computational units and interconnection patterns, improving over highly-optimized Transformers and striped hybrid models on the frontier of quality, parameter size, and inference cache for autoregressive language modeling.
arXiv Detail & Related papers (2024-11-26T18:42:42Z) - DreamPolish: Domain Score Distillation With Progressive Geometry Generation [66.94803919328815]
We introduce DreamPolish, a text-to-3D generation model that excels in producing refined geometry and high-quality textures.
In the geometry construction phase, our approach leverages multiple neural representations to enhance the stability of the synthesis process.
In the texture generation phase, we introduce a novel score distillation objective, namely domain score distillation (DSD), to guide neural representations toward such a domain.
arXiv Detail & Related papers (2024-11-03T15:15:01Z) - Part-aware Shape Generation with Latent 3D Diffusion of Neural Voxel Fields [50.12118098874321]
We introduce a latent 3D diffusion process for neural voxel fields, enabling generation at significantly higher resolutions.
A part-aware shape decoder is introduced to integrate the part codes into the neural voxel fields, guiding the accurate part decomposition.
The results demonstrate the superior generative capabilities of our proposed method in part-aware shape generation, outperforming existing state-of-the-art methods.
arXiv Detail & Related papers (2024-05-02T04:31:17Z) - Terrain Diffusion Network: Climatic-Aware Terrain Generation with
Geological Sketch Guidance [16.29267504093274]
Sketch-based terrain generation seeks to create realistic landscapes for virtual environments in various applications such as computer games, animation and virtual reality.
We propose a novel diffusion-based method, namely terrain diffusion network (TDN), which actively incorporates user guidance for enhanced controllability.
Three terrain synthesisers are designed for structural, intermediate, and fine-grained level denoising purposes, which allow each synthesiser concentrate on a distinct terrain aspect.
arXiv Detail & Related papers (2023-08-31T13:41:34Z) - Neural Point-based Volumetric Avatar: Surface-guided Neural Points for
Efficient and Photorealistic Volumetric Head Avatar [62.87222308616711]
We propose fullname (name), a method that adopts the neural point representation and the neural volume rendering process.
Specifically, the neural points are strategically constrained around the surface of the target expression via a high-resolution UV displacement map.
By design, our name is better equipped to handle topologically changing regions and thin structures while also ensuring accurate expression control when animating avatars.
arXiv Detail & Related papers (2023-07-11T03:40:10Z) - NeuManifold: Neural Watertight Manifold Reconstruction with Efficient
and High-Quality Rendering Support [45.68296352822415]
We present a method for generating high-quality watertight manifold meshes from multi-view input images.
Our method combines the benefits of both worlds; we take the geometry obtained from neural fields, and further optimize the geometry as well as a compact neural texture representation.
arXiv Detail & Related papers (2023-05-26T17:59:21Z) - Learning Graph Neural Networks for Image Style Transfer [131.73237185888215]
State-of-the-art parametric and non-parametric style transfer approaches are prone to either distorted local style patterns due to global statistics alignment, or unpleasing artifacts resulting from patch mismatching.
In this paper, we study a novel semi-parametric neural style transfer framework that alleviates the deficiency of both parametric and non-parametric stylization.
arXiv Detail & Related papers (2022-07-24T07:41:31Z) - Deep Generative Framework for Interactive 3D Terrain Authoring and
Manipulation [4.202216894379241]
We propose a novel realistic terrain authoring framework powered by a combination of VAE and generative conditional GAN model.
Our framework is an example-based method that attempts to overcome the limitations of existing methods by learning a latent space from a real-world terrain dataset.
We also developed an interactive tool, that lets the user generate diverse terrains with minimalist inputs.
arXiv Detail & Related papers (2022-01-07T08:58:01Z) - Dynamically Grown Generative Adversarial Networks [111.43128389995341]
We propose a method to dynamically grow a GAN during training, optimizing the network architecture and its parameters together with automation.
The method embeds architecture search techniques as an interleaving step with gradient-based training to periodically seek the optimal architecture-growing strategy for the generator and discriminator.
arXiv Detail & Related papers (2021-06-16T01:25:51Z) - Texture Generation with Neural Cellular Automata [64.70093734012121]
We learn a texture generator from a single template image.
We make claims that the behaviour exhibited by the NCA model is a learned, distributed, local algorithm to generate a texture.
arXiv Detail & Related papers (2021-05-15T22:05:46Z) - Semi-supervised Synthesis of High-Resolution Editable Textures for 3D
Humans [14.098628848491147]
We introduce a novel approach to generate diverse high fidelity texture maps for 3D human meshes in a semi-supervised setup.
Given a segmentation mask defining the layout of the semantic regions in the texture map, our network generates high-resolution textures with a variety of styles, that are then used for rendering purposes.
arXiv Detail & Related papers (2021-03-31T17:58:34Z) - Recurrent Distillation based Crowd Counting [23.4315417286694]
We propose a simple yet effective crowd counting framework that is able to achieve the state-of-the-art performance on various crowded scenes.
In experiments, we demonstrate that, with our simple convolutional neural network architecture strengthened by our proposed training algorithm, our model is able to outperform or be comparable with the state-of-the-art methods.
arXiv Detail & Related papers (2020-06-14T01:04:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.