Terrain Diffusion Network: Climatic-Aware Terrain Generation with
Geological Sketch Guidance
- URL: http://arxiv.org/abs/2308.16725v1
- Date: Thu, 31 Aug 2023 13:41:34 GMT
- Title: Terrain Diffusion Network: Climatic-Aware Terrain Generation with
Geological Sketch Guidance
- Authors: Zexin Hu, Kun Hu, Clinton Mo, Lei Pan, Zhiyong Wang
- Abstract summary: Sketch-based terrain generation seeks to create realistic landscapes for virtual environments in various applications such as computer games, animation and virtual reality.
We propose a novel diffusion-based method, namely terrain diffusion network (TDN), which actively incorporates user guidance for enhanced controllability.
Three terrain synthesisers are designed for structural, intermediate, and fine-grained level denoising purposes, which allow each synthesiser concentrate on a distinct terrain aspect.
- Score: 16.29267504093274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sketch-based terrain generation seeks to create realistic landscapes for
virtual environments in various applications such as computer games, animation
and virtual reality. Recently, deep learning based terrain generation has
emerged, notably the ones based on generative adversarial networks (GAN).
However, these methods often struggle to fulfill the requirements of flexible
user control and maintain generative diversity for realistic terrain.
Therefore, we propose a novel diffusion-based method, namely terrain diffusion
network (TDN), which actively incorporates user guidance for enhanced
controllability, taking into account terrain features like rivers, ridges,
basins, and peaks. Instead of adhering to a conventional monolithic denoising
process, which often compromises the fidelity of terrain details or the
alignment with user control, a multi-level denoising scheme is proposed to
generate more realistic terrains by taking into account fine-grained details,
particularly those related to climatic patterns influenced by erosion and
tectonic activities. Specifically, three terrain synthesisers are designed for
structural, intermediate, and fine-grained level denoising purposes, which
allow each synthesiser concentrate on a distinct terrain aspect. Moreover, to
maximise the efficiency of our TDN, we further introduce terrain and sketch
latent spaces for the synthesizers with pre-trained terrain autoencoders.
Comprehensive experiments on a new dataset constructed from NASA Topology
Images clearly demonstrate the effectiveness of our proposed method, achieving
the state-of-the-art performance. Our code and dataset will be publicly
available.
Related papers
- Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE) is a novel embedding space specifically designed for deepfake detection.
CoDE is trained via contrastive learning by additionally enforcing global-local similarities.
arXiv Detail & Related papers (2024-07-29T18:00:10Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - ImplicitTerrain: a Continuous Surface Model for Terrain Data Analysis [14.013976303831313]
ImplicitTerrain is an implicit neural representation (INR) approach for modeling high-resolution terrain continuously and differentiably.
Our experiments demonstrate superior surface fitting accuracy, effective topological feature retrieval, and various topographical feature extraction.
arXiv Detail & Related papers (2024-05-31T23:05:34Z) - StrideNET: Swin Transformer for Terrain Recognition with Dynamic Roughness Extraction [0.0]
This paper presents StrideNET, a novel dual-branch architecture designed for terrain recognition and implicit properties estimation.
The implications of this work extend to various applications, including environmental monitoring, land use and land cover (LULC) classification, disaster response, precision agriculture.
arXiv Detail & Related papers (2024-04-20T04:51:59Z) - LiveHPS: LiDAR-based Scene-level Human Pose and Shape Estimation in Free
Environment [59.320414108383055]
We present LiveHPS, a novel single-LiDAR-based approach for scene-level human pose and shape estimation.
We propose a huge human motion dataset, named FreeMotion, which is collected in various scenarios with diverse human poses.
arXiv Detail & Related papers (2024-02-27T03:08:44Z) - Using Global Land Cover Product as Prompt for Cropland Mapping via
Visual Foundation Model [6.35948253619752]
We introduce the "Pretrain+Prompting" paradigm to interpreting cropland scenes and design the auto-prompting (APT) method based on freely available global land cover product.
It can achieve a fine-grained adaptation process from generic scenes to specialized cropland scenes without introducing additional label costs.
Our experiments using two sub-meter cropland datasets from southern and northern China demonstrated that the proposed method via visual foundation models outperforms traditional supervised learning and fine-tuning approaches in the field of remote sensing.
arXiv Detail & Related papers (2023-10-16T09:29:52Z) - HarmonicNeRF: Geometry-Informed Synthetic View Augmentation for 3D Scene Reconstruction in Driving Scenarios [2.949710700293865]
HarmonicNeRF is a novel approach for outdoor self-supervised monocular scene reconstruction.
It capitalizes on the strengths of NeRF and enhances surface reconstruction accuracy by augmenting the input space with geometry-informed synthetic views.
Our approach establishes new benchmarks in synthesizing novel depth views and reconstructing scenes, significantly outperforming existing methods.
arXiv Detail & Related papers (2023-10-09T07:42:33Z) - Neural Point-based Volumetric Avatar: Surface-guided Neural Points for
Efficient and Photorealistic Volumetric Head Avatar [62.87222308616711]
We propose fullname (name), a method that adopts the neural point representation and the neural volume rendering process.
Specifically, the neural points are strategically constrained around the surface of the target expression via a high-resolution UV displacement map.
By design, our name is better equipped to handle topologically changing regions and thin structures while also ensuring accurate expression control when animating avatars.
arXiv Detail & Related papers (2023-07-11T03:40:10Z) - Grid-guided Neural Radiance Fields for Large Urban Scenes [146.06368329445857]
Recent approaches propose to geographically divide the scene and adopt multiple sub-NeRFs to model each region individually.
An alternative solution is to use a feature grid representation, which is computationally efficient and can naturally scale to a large scene.
We present a new framework that realizes high-fidelity rendering on large urban scenes while being computationally efficient.
arXiv Detail & Related papers (2023-03-24T13:56:45Z) - Deep Generative Framework for Interactive 3D Terrain Authoring and
Manipulation [4.202216894379241]
We propose a novel realistic terrain authoring framework powered by a combination of VAE and generative conditional GAN model.
Our framework is an example-based method that attempts to overcome the limitations of existing methods by learning a latent space from a real-world terrain dataset.
We also developed an interactive tool, that lets the user generate diverse terrains with minimalist inputs.
arXiv Detail & Related papers (2022-01-07T08:58:01Z) - Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders [63.46738617561255]
We consider the problem of sparsifying the discrete latent space of a trained conditional variational autoencoder.
We use evidential theory to identify the latent classes that receive direct evidence from a particular input condition and filter out those that do not.
Experiments on diverse tasks, such as image generation and human behavior prediction, demonstrate the effectiveness of our proposed technique.
arXiv Detail & Related papers (2020-10-19T01:27:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.