Multi-view Subspace Clustering via An Adaptive Consensus Graph Filter
- URL: http://arxiv.org/abs/2403.08787v1
- Date: Tue, 30 Jan 2024 02:03:18 GMT
- Title: Multi-view Subspace Clustering via An Adaptive Consensus Graph Filter
- Authors: Lai Wei, Shanshan Song,
- Abstract summary: Multiview subspace clustering (MVSC) has attracted an increasing amount of attention in recent years.
In this paper, we assume the existence of a consensus reconstruction coefficient matrix and then use it to build a consensus graph filter.
In each view, the filter is employed for smoothing the data and designing a regularizer for the reconstruction coefficient matrix.
- Score: 4.3507834596906125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiview subspace clustering (MVSC) has attracted an increasing amount of attention in recent years. Most existing MVSC methods first collect complementary information from different views and consequently derive a consensus reconstruction coefficient matrix to indicate the subspace structure of a multi-view data set. In this paper, we initially assume the existence of a consensus reconstruction coefficient matrix and then use it to build a consensus graph filter. In each view, the filter is employed for smoothing the data and designing a regularizer for the reconstruction coefficient matrix. Finally, the obtained reconstruction coefficient matrices from different views are used to create constraints for the consensus reconstruction coefficient matrix. Therefore, in the proposed method, the consensus reconstruction coefficient matrix, the consensus graph filter, and the reconstruction coefficient matrices from different views are interdependent. We provide an optimization algorithm to obtain their optimal values. Extensive experiments on diverse multi-view data sets demonstrate that our approach outperforms some state-of-the-art methods.
Related papers
- Enhanced Latent Multi-view Subspace Clustering [25.343388834470247]
We propose an Enhanced Latent Multi-view Subspace Clustering (ELMSC) method for recovering latent space representation.
Our proposed ELMSC is able to achieve higher clustering performance than some state-of-art multi-view clustering methods.
arXiv Detail & Related papers (2023-12-22T15:28:55Z) - Adaptive Graph Convolutional Subspace Clustering [10.766537212211217]
Spectral-type subspace clustering algorithms have shown excellent performance in many subspace clustering applications.
In this paper, inspired by graph convolutional networks, we use the graph convolution technique to develop a feature extraction method and a coefficient matrix constraint simultaneously.
We claim that by using AGCSC, the aggregated feature representation of original data samples is suitable for subspace clustering.
arXiv Detail & Related papers (2023-05-05T10:27:23Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Multi-view Clustering via Deep Matrix Factorization and Partition
Alignment [43.56334737599984]
We propose a novel multi-view clustering algorithm via deep matrix decomposition and partition alignment.
An alternating optimization algorithm is developed to solve the optimization problem with proven convergence.
arXiv Detail & Related papers (2021-05-01T15:06:57Z) - Multi-view Clustering with Deep Matrix Factorization and Global Graph
Refinement [37.34296330445708]
Multi-view clustering is an important yet challenging task in machine learning and data mining.
We propose a novel Multi-View Clustering method with Deep semi-NMF and Global Graph Refinement (MVC-DMF-GGR) in this paper.
arXiv Detail & Related papers (2021-05-01T13:40:20Z) - Discriminatively Constrained Semi-supervised Multi-view Nonnegative
Matrix Factorization with Graph Regularization [10.978930376656423]
We propose a novel Discriminatively Constrained Semi-Supervised Multi-View Nonnegative Matrix Factorization (DCS2MVNMF)
Specifically, a discriminative weighting matrix is introduced for the auxiliary matrix of each view, which enhances the inter-class distinction.
In addition, we design a new feature scale normalization strategy to align the multiple views and complete the corresponding iterative optimization schemes.
arXiv Detail & Related papers (2020-10-26T02:58:11Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Augmentation of the Reconstruction Performance of Fuzzy C-Means with an
Optimized Fuzzification Factor Vector [99.19847674810079]
Fuzzy C-Means (FCM) is one of the most frequently used methods to construct information granules.
In this paper, we augment the FCM-based degranulation mechanism by introducing a vector of fuzzification factors.
Experiments completed for both synthetic and publicly available datasets show that the proposed approach outperforms the generic data reconstruction approach.
arXiv Detail & Related papers (2020-04-13T04:17:30Z) - Federated Multi-view Matrix Factorization for Personalized
Recommendations [53.74747022749739]
We introduce the federated multi-view matrix factorization method that extends the federated learning framework to matrix factorization with multiple data sources.
Our method is able to learn the multi-view model without transferring the user's personal data to a central server.
arXiv Detail & Related papers (2020-04-08T21:07:50Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
We come up with a Kullback-Leibler (KL) divergence-based Fuzzy C-Means (FCM) algorithm by incorporating a tight wavelet frame transform and a morphological reconstruction operation.
The proposed algorithm works well and comes with better segmentation performance than other comparative algorithms.
arXiv Detail & Related papers (2020-02-21T05:19:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.