論文の概要: Verification for Object Detection -- IBP IoU
- arxiv url: http://arxiv.org/abs/2403.08788v1
- Date: Tue, 30 Jan 2024 09:05:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:16:13.559599
- Title: Verification for Object Detection -- IBP IoU
- Title(参考訳): 物体検出の検証 -- IBP IoU
- Authors: Noémie Cohen, Mélanie Ducoffe, Ryma Boumazouza, Christophe Gabreau, Claire Pagetti, Xavier Pucel, Audrey Galametz,
- Abstract要約: 本稿では,物体検出モデルの形式的検証のための新しいインターバル境界伝搬法を提案する。
このアプローチはIBP IoUという名前のオープンソースコードで実装されており、一般的な抽象的な解釈に基づく検証ツールと互換性がある。
- 参考スコア(独自算出の注目度): 2.2291239762534145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel Interval Bound Propagation (IBP) approach for the formal verification of object detection models, specifically targeting the Intersection over Union (IoU) metric. The approach has been implemented in an open source code, named IBP IoU, compatible with popular abstract interpretation based verification tools. The resulting verifier is evaluated on landing approach runway detection and handwritten digit recognition case studies. Comparisons against a baseline (Vanilla IBP IoU) highlight the superior performance of IBP IoU in ensuring accuracy and stability, contributing to more secure and robust machine learning applications.
- Abstract(参考訳): 我々は、オブジェクト検出モデルの形式的検証のための新しいインターバル境界伝搬(IBP)手法を導入し、特に、IoU(Intersection over Union)メトリックをターゲットとした。
このアプローチはIBP IoUという名前のオープンソースコードで実装されており、一般的な抽象的な解釈に基づく検証ツールと互換性がある。
得られた検証はランディングアプローチによる滑走路検出と手書き文字認識ケーススタディに基づいて評価される。
ベースライン(Vanilla IBP IoU)との比較では、IPP IoUの精度と安定性が向上し、よりセキュアで堅牢な機械学習アプリケーションに寄与する。
関連論文リスト
- Individual Packet Features are a Risk to Model Generalisation in ML-Based Intrusion Detection [3.3772986620114387]
個々のパケット特徴(IPF)は、タイミング、サイズ、およびソース決定情報などの単一のネットワークパケットから抽出された属性である。
我々はIPFの限界を特定し、誤って高い検出率が得られることを示す。
本研究は,堅牢な侵入検知のためのパケット相互作用を考慮したアプローチの必要性を強調した。
論文 参考訳(メタデータ) (2024-06-07T21:05:33Z) - EC-IoU: Orienting Safety for Object Detectors via Ego-Centric Intersection-over-Union [7.355977594790584]
本稿では,新しいEgo-Centric Intersection-over-Union(EC-IoU)尺度による安全指向物体検出について述べる。
我々は,広範に使用されているIoU測度を改良する重み付け機構を提案し,エゴエージェントの観点から,接地構造体の近点をカバーする予測値に高いスコアを割り当てる。
論文 参考訳(メタデータ) (2024-03-20T16:25:49Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
本稿では,物理にヒントを得たハイブリットアテンション(PIHA)機構と,この問題に対処するためのOFA評価プロトコルを提案する。
PIHAは、物理的情報の高レベルなセマンティクスを活用して、ターゲットの局所的なセマンティクスを認識した特徴群を活性化し、誘導する。
提案手法は,ASCパラメータが同じ12のテストシナリオにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-27T14:39:41Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Be Your Own Neighborhood: Detecting Adversarial Example by the
Neighborhood Relations Built on Self-Supervised Learning [64.78972193105443]
本稿では,予測に有効な新しいAE検出フレームワークを提案する。
AEの異常な関係と拡張バージョンを区別して検出を行う。
表現を抽出し、ラベルを予測するために、既製の自己監視学習(SSL)モデルが使用される。
論文 参考訳(メタデータ) (2022-08-31T08:18:44Z) - Neural Enhanced Belief Propagation for Data Assocation in Multiobject
Tracking [8.228150100178983]
マルチオブジェクトトラッキング(MOT)は、自律ナビゲーションや応用海洋科学などの分野における新しいサービスとアプリケーションを作成する。
信念伝播(BP)はベイジアンMOTの最先端の手法であるが、統計モデルと事前処理されたセンサ測定に完全に依存している。
我々は,モデルベースおよびデータ駆動型MOTのハイブリッド手法を構築し,提案手法は生センサデータから得られた情報によってBPを補完する。
nuScenes 自律走行データセット上でのMOTに対するNEBP手法の性能評価を行い,その性能を実証する。
論文 参考訳(メタデータ) (2022-03-17T00:12:48Z) - Evaluating Federated Learning for Intrusion Detection in Internet of
Things: Review and Challenges [0.0]
フェデレーテッド・ラーニング(FL)は、医療や交通システムなど、さまざまな分野で大きな関心を集めている。
我々は,IoTシナリオにおける異なる攻撃を検出するために,異なるデータ分布を考慮したマルチクラス分類器に基づくFL対応IDSアプローチを評価する。
我々は,既存の文献と評価結果の分析に基づいて,課題の集合と今後の方向性を同定する。
論文 参考訳(メタデータ) (2021-08-02T15:22:05Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
我々は、N-BaIoT、FedDetectアルゴリズム、IoTデバイスのシステム設計を使用した合成データセットを含むFedIoTプラットフォームを構築します。
現実的なIoTデバイス(PI)のネットワークにおいて,FedIoTプラットフォームとFedDetectアルゴリズムをモデルおよびシステムパフォーマンスの両方で評価する。
論文 参考訳(メタデータ) (2021-06-15T08:53:42Z) - Pseudo-IoU: Improving Label Assignment in Anchor-Free Object Detection [60.522877583407904]
現在のアンカーフリー物体検出器は非常に単純で有効であるが、正確なラベル割り当て方法がない。
Pseudo-Intersection-over-Union(Pseudo-IoU): アンカーフリーなオブジェクト検出フレームワークに、より標準化され、正確な割り当てルールをもたらす単純なメトリックである。
本手法はベルやホイッスルを使わずに最新のアンカーフリー手法と同等の性能を実現する。
論文 参考訳(メタデータ) (2021-04-29T02:48:47Z) - Personal Fixations-Based Object Segmentation with Object Localization
and Boundary Preservation [60.41628937597989]
我々はPFOS(Personal Fixations-based Object)に着目し,過去の研究の課題に対処する。
視線オブジェクトをセグメント化するオブジェクトローカリゼーションと境界保存(OLBP)に基づく新しいネットワークを提案する。
OLBPは複数のタイプの深い監督の混合されたボトムアップおよびトップダウンの方法で整理されます。
論文 参考訳(メタデータ) (2021-01-22T09:20:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。