Governance of Generative Artificial Intelligence for Companies
- URL: http://arxiv.org/abs/2403.08802v2
- Date: Sun, 9 Jun 2024 19:48:05 GMT
- Title: Governance of Generative Artificial Intelligence for Companies
- Authors: Johannes Schneider, Rene Abraham, Christian Meske,
- Abstract summary: We develop a framework for GenAI governance within companies.
This framework outlines the scope, objectives, and governance mechanisms tailored to harness business opportunities.
- Score: 1.4003044924094596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Artificial Intelligence (GenAI), specifically large language models like ChatGPT, has swiftly entered organizations without adequate governance, posing both opportunities and risks. Despite extensive debates on GenAI's transformative nature and regulatory measures, limited research addresses organizational governance, encompassing technical and business perspectives. Our review paper fills this gap by surveying recent works with the purpose of developing a framework for GenAI governance within companies. This framework outlines the scope, objectives, and governance mechanisms tailored to harness business opportunities as well as mitigate risks associated with GenAI integration. Our research contributes a focused approach to GenAI governance, offering practical insights for companies navigating the challenges of GenAI adoption and highlighting research gaps.
Related papers
- Generative AI and Agency in Education: A Critical Scoping Review and Thematic Analysis [0.0]
This review examines the relationship between Generative AI (GenAI) and agency in education, analyzing the literature available through the lens of Critical Digital Pedagogy.
We conducted an AI-supported hybrid thematic analysis that revealed three key themes: Control in Digital Spaces, Variable Engagement and Access, and Changing Notions of Agency.
The findings suggest that while GenAI may enhance learner agency through personalization and support, it also risks exacerbating educational inequalities and diminishing learner autonomy in certain contexts.
arXiv Detail & Related papers (2024-11-01T14:40:31Z) - Environment Scan of Generative AI Infrastructure for Clinical and Translational Science [35.90108933392196]
This study reports a comprehensive scan of the generative AI (GenAI) infrastructure in the national network for clinical and translational science across 36 institutions.
This research explores the current status of GenAI integration, focusing on stakeholder roles, governance structures, and ethical considerations.
arXiv Detail & Related papers (2024-09-28T01:53:13Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
generative AI, particularly large language models (LLMs), become increasingly integrated into production applications.
New attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems.
Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks.
This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
arXiv Detail & Related papers (2024-09-23T10:18:10Z) - Open Problems in Technical AI Governance [93.89102632003996]
Technical AI governance refers to technical analysis and tools for supporting the effective governance of AI.
This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
arXiv Detail & Related papers (2024-07-20T21:13:56Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
We argue that Generative Artificial Intelligence (GenAI) can be used as a means to address the limitations of Model-Based Engineering (MBM&E)
We propose that GenAI can be used in MBM&E for: reducing engineers' learning curve, maximizing efficiency with recommendations, or serving as a reasoning tool to understand domain problems.
arXiv Detail & Related papers (2024-07-09T23:13:26Z) - Securing the Future of GenAI: Policy and Technology [50.586585729683776]
Governments globally are grappling with the challenge of regulating GenAI, balancing innovation against safety.
A workshop co-organized by Google, University of Wisconsin, Madison, and Stanford University aimed to bridge this gap between GenAI policy and technology.
This paper summarizes the discussions during the workshop which addressed questions, such as: How regulation can be designed without hindering technological progress?
arXiv Detail & Related papers (2024-05-21T20:30:01Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Applications of Generative AI (Gen AI) are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about the potential risks of the technology, and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source generative AI.
arXiv Detail & Related papers (2024-05-14T13:37:36Z) - The AI Assessment Scale (AIAS): A Framework for Ethical Integration of Generative AI in Educational Assessment [0.0]
We outline a practical, simple, and sufficiently comprehensive tool to allow for the integration of GenAI tools into educational assessment.
The AI Assessment Scale (AIAS) empowers educators to select the appropriate level of GenAI usage in assessments.
By adopting a practical, flexible approach, the AIAS can form a much-needed starting point to address the current uncertainty and anxiety regarding GenAI in education.
arXiv Detail & Related papers (2023-12-12T09:08:36Z) - Generative AI in the Construction Industry: Opportunities & Challenges [2.562895371316868]
Current surge lacks a study investigating the opportunities and challenges of implementing Generative AI (GenAI) in the construction sector.
This study delves into reflected perception in literature, analyzes the industry perception using programming-based word cloud and frequency analysis.
This paper recommends a conceptual GenAI implementation framework, provides practical recommendations, summarizes future research questions, and builds foundational literature to foster subsequent research expansion in GenAI.
arXiv Detail & Related papers (2023-09-19T18:20:49Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.