Comparison of edge computing methods in Internet of Things architectures for efficient estimation of indoor environmental parameters with Machine Learning
- URL: http://arxiv.org/abs/2403.08810v1
- Date: Wed, 7 Feb 2024 21:15:18 GMT
- Title: Comparison of edge computing methods in Internet of Things architectures for efficient estimation of indoor environmental parameters with Machine Learning
- Authors: Jose-Carlos Gamazo-Real, Raul Torres Fernandez, Adrian Murillo Armas,
- Abstract summary: Two methods are proposed to implement lightweight Machine Learning models that estimate indoor environmental quality (IEQ) parameters.
Their implementation is based on centralised and distributed parallel IoT architectures, connected via wireless.
The training and testing of ML models is accomplished with experiments focused on small temperature and illuminance datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The large increase in the number of Internet of Things (IoT) devices have revolutionised the way data is processed, which added to the current trend from cloud to edge computing has resulted in the need for efficient and reliable data processing near the data sources using energy-efficient devices. Two methods based on low-cost edge-IoT architectures are proposed to implement lightweight Machine Learning (ML) models that estimate indoor environmental quality (IEQ) parameters, such as Artificial Neural Networks of Multilayer Perceptron type. Their implementation is based on centralised and distributed parallel IoT architectures, connected via wireless, which share commercial off-the-self modules for data acquisition and sensing, such as sensors for temperature, humidity, illuminance, CO2, and other gases. The centralised method uses a Graphics Processing Unit and the Message Queuing Telemetry Transport protocol, but the distributed method utilises low performance ARM-based devices and the Message Passing Interface protocol. Although multiple IEQ parameters are measured, the training and testing of ML models is accomplished with experiments focused on small temperature and illuminance datasets to reduce data processing load, obtained from sudden spikes, square profiles and sawteeth test cases. The results show a high estimation performance with F-score and Accuracy values close to 0.95, and an almost theorical Speedup with a reduction in power consumption close to 37% in the distributed parallel approach. In addition, similar or slightly better performance is achieved compared to equivalent IoT architectures from related research, but error reduction of 35 to 76% is accomplished with an adequate balance between performance and energy efficiency.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NAS has emerged, generalizing the search process from dataset-dependent to task-dependent.
This paper introduces POMONAG, extending DiffusionNAG via a many-optimal diffusion process.
Results were validated on two search spaces -- NAS201 and MobileNetV3 -- and evaluated across 15 image classification datasets.
arXiv Detail & Related papers (2024-09-30T16:05:29Z) - Energy-Efficient Edge Learning via Joint Data Deepening-and-Prefetching [9.468399367975984]
We propose a novel offloading architecture called joint data deepening-and-prefetching (JD2P)
JD2P is feature-by-feature offloading comprising two key techniques.
We evaluate the effectiveness of JD2P through experiments using the MNIST dataset.
arXiv Detail & Related papers (2024-02-19T08:12:47Z) - HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics
in Industrial Metaverse [49.1501082763252]
This paper presents HFEDMS for incorporating practical FL into the emerging Industrial Metaverse.
It reduces data heterogeneity through dynamic grouping and training mode conversion.
Then, it compensates for the forgotten knowledge by fusing compressed historical data semantics.
Experiments have been conducted on the streamed non-i.i.d. FEMNIST dataset using 368 simulated devices.
arXiv Detail & Related papers (2022-11-07T04:33:24Z) - Time-Correlated Sparsification for Efficient Over-the-Air Model
Aggregation in Wireless Federated Learning [23.05003652536773]
Federated edge learning (FEEL) is a promising distributed machine learning (ML) framework to drive edge intelligence applications.
We propose time-correlated sparsification with hybrid aggregation (TCS-H) for communication-efficient FEEL.
arXiv Detail & Related papers (2022-02-17T02:48:07Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
Machine learning (ML) is a key technique for big-data-driven modelling and analysis of massive Internet of Things (IoT) based intelligent and ubiquitous computing.
For fast-increasing applications and data amounts, distributed learning is a promising emerging paradigm since it is often impractical or inefficient to share/aggregate data.
This paper studies the problem of training an ML model over decentralized systems, where data are distributed over many user devices.
arXiv Detail & Related papers (2022-02-07T15:04:15Z) - Balancing Performance and Energy Consumption of Bagging Ensembles for
the Classification of Data Streams in Edge Computing [9.801387036837871]
Edge Computing (EC) has emerged as an enabling factor for developing technologies like the Internet of Things (IoT) and 5G networks.
This work investigates strategies for optimizing the performance and energy consumption of bagging ensembles to classify data streams.
arXiv Detail & Related papers (2022-01-17T04:12:18Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
We propose a technique to reduce the total energy bill at the edge device by utilizing model compression and time-varying model split between the edge and remote nodes.
Our proposed solution results in minimal energy consumption and $CO$ emission compared to the considered baselines.
arXiv Detail & Related papers (2021-06-02T07:36:27Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
We present an accuracy predictor that scores architecture and training recipes jointly, guiding both sample selection and ranking.
We run fast evolutionary searches in just CPU minutes to generate architecture-recipe pairs for a variety of resource constraints.
FBNetV3 makes up a family of state-of-the-art compact neural networks that outperform both automatically and manually-designed competitors.
arXiv Detail & Related papers (2020-06-03T05:20:21Z) - Lightweight Residual Densely Connected Convolutional Neural Network [18.310331378001397]
The lightweight residual densely connected blocks are proposed to guaranty the deep supervision, efficient gradient flow, and feature reuse abilities of convolutional neural network.
The proposed method decreases the cost of training and inference processes without using any special hardware-software equipment.
arXiv Detail & Related papers (2020-01-02T17:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.