Balancing Performance and Energy Consumption of Bagging Ensembles for
the Classification of Data Streams in Edge Computing
- URL: http://arxiv.org/abs/2201.06205v1
- Date: Mon, 17 Jan 2022 04:12:18 GMT
- Title: Balancing Performance and Energy Consumption of Bagging Ensembles for
the Classification of Data Streams in Edge Computing
- Authors: Guilherme Cassales, Heitor Gomes, Albert Bifet, Bernhard Pfahringer,
Hermes Senger
- Abstract summary: Edge Computing (EC) has emerged as an enabling factor for developing technologies like the Internet of Things (IoT) and 5G networks.
This work investigates strategies for optimizing the performance and energy consumption of bagging ensembles to classify data streams.
- Score: 9.801387036837871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the Edge Computing (EC) paradigm has emerged as an enabling
factor for developing technologies like the Internet of Things (IoT) and 5G
networks, bridging the gap between Cloud Computing services and end-users,
supporting low latency, mobility, and location awareness to delay-sensitive
applications. Most solutions in EC employ machine learning (ML) methods to
perform data classification and other information processing tasks on
continuous and evolving data streams. Usually, such solutions have to cope with
vast amounts of data that come as data streams while balancing energy
consumption, latency, and the predictive performance of the algorithms.
Ensemble methods achieve remarkable predictive performance when applied to
evolving data streams due to the combination of several models and the
possibility of selective resets. This work investigates strategies for
optimizing the performance (i.e., delay, throughput) and energy consumption of
bagging ensembles to classify data streams. The experimental evaluation
involved six state-of-art ensemble algorithms (OzaBag, OzaBag Adaptive Size
Hoeffding Tree, Online Bagging ADWIN, Leveraging Bagging, Adaptive
RandomForest, and Streaming Random Patches) applying five widely used machine
learning benchmark datasets with varied characteristics on three computer
platforms. Such strategies can significantly reduce energy consumption in 96%
of the experimental scenarios evaluated. Despite the trade-offs, it is possible
to balance them to avoid significant loss in predictive performance.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
This article highlights a significant shift towards leveraging quantum computing techniques in processing large volumes of remote sensing data.
The proposed Quanv4EO model introduces a quanvolution method for preprocessing multi-dimensional EO data.
Key findings suggest that the proposed model not only maintains high precision in image classification but also shows improvements of around 5% in EO use cases.
arXiv Detail & Related papers (2024-07-24T09:11:34Z) - Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach [34.00679567444125]
We develop a dynamic scheduling and resource allocation algorithm to address the inherent randomness in data arrivals and resource availability under long-term energy constraints.
Our proposed algorithm makes adaptive decisions on device scheduling, computational capacity adjustment, and allocation of bandwidth and transmit power in every round.
The effectiveness of our scheme is verified through simulation results, demonstrating improved learning performance and energy efficiency as compared to baseline schemes.
arXiv Detail & Related papers (2024-05-20T14:13:22Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Energy-Efficient Edge Learning via Joint Data Deepening-and-Prefetching [9.468399367975984]
We propose a novel offloading architecture called joint data deepening-and-prefetching (JD2P)
JD2P is feature-by-feature offloading comprising two key techniques.
We evaluate the effectiveness of JD2P through experiments using the MNIST dataset.
arXiv Detail & Related papers (2024-02-19T08:12:47Z) - Comparison of edge computing methods in Internet of Things architectures for efficient estimation of indoor environmental parameters with Machine Learning [0.0]
Two methods are proposed to implement lightweight Machine Learning models that estimate indoor environmental quality (IEQ) parameters.
Their implementation is based on centralised and distributed parallel IoT architectures, connected via wireless.
The training and testing of ML models is accomplished with experiments focused on small temperature and illuminance datasets.
arXiv Detail & Related papers (2024-02-07T21:15:18Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Data augmentation through multivariate scenario forecasting in Data
Centers using Generative Adversarial Networks [0.18416014644193063]
The main challenge in achieving a global energy efficiency strategy based on Artificial Intelligence is that we need massive amounts of data to feed the algorithms.
This paper proposes a time-series data augmentation methodology based on synthetic scenario forecasting within the Data Center.
Our research will help to optimize the energy consumed in Data Centers, although the proposed methodology can be employed in any similar time-series-like problem.
arXiv Detail & Related papers (2022-01-12T15:09:10Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Towards Heterogeneous Clients with Elastic Federated Learning [45.2715985913761]
Federated learning involves training machine learning models over devices or data silos, such as edge processors or data warehouses, while keeping the data local.
We propose Elastic Federated Learning (EFL), an unbiased algorithm to tackle the heterogeneity in the system.
It is an efficient and effective algorithm that compresses both upstream and downstream communications.
arXiv Detail & Related papers (2021-06-17T12:30:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.