Fuzzy Fault Trees Formalized
- URL: http://arxiv.org/abs/2403.08843v1
- Date: Wed, 13 Mar 2024 14:45:54 GMT
- Title: Fuzzy Fault Trees Formalized
- Authors: Thi Kim Nhung Dang, Milan LopuhaƤ-Zwakenberg, Mariƫlle Stoelinga,
- Abstract summary: Fuzzy logic is a popular framework for dealing with ambiguous values.
In this paper, we define a rigorous framework for fuzzy unreliability values.
We also provide a bottom-up algorithm to efficiently calculate fuzzy reliability for a system.
- Score: 1.640922391885265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fault tree analysis is a vital method of assessing safety risks. It helps to identify potential causes of accidents, assess their likelihood and severity, and suggest preventive measures. Quantitative analysis of fault trees is often done via the dependability metrics that compute the system's failure behaviour over time. However, the lack of precise data is a major obstacle to quantitative analysis, and so to reliability analysis. Fuzzy logic is a popular framework for dealing with ambiguous values and has applications in many domains. A number of fuzzy approaches have been proposed to fault tree analysis, but -- to the best of our knowledge -- none of them provide rigorous definitions or algorithms for computing fuzzy unreliability values. In this paper, we define a rigorous framework for fuzzy unreliability values. In addition, we provide a bottom-up algorithm to efficiently calculate fuzzy reliability for a system. The algorithm incorporates the concept of $\alpha$-cuts method. That is, performing binary algebraic operations on intervals on horizontally discretised $\alpha$-cut representations of fuzzy numbers. The method preserves the nonlinearity of fuzzy unreliability. Finally, we illustrate the results obtained from two case studies.
Related papers
- Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
arXiv Detail & Related papers (2024-07-10T09:13:11Z) - Fuzzy quantitative attack tree analysis [1.640922391885265]
Quantitative attack tree analysis supports a number security metrics, which formulate important such as the shortest, most likely and cheapest attacks.
A key bottleneck in quantitative analysis is that the values are usually not known exactly, due to insufficient data and/or lack of knowledge.
We prove a modular decomposition theorem that yields a bottom-up algorithm to efficiently calculate the top fuzzy metric value.
arXiv Detail & Related papers (2024-01-22T20:24:53Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification problem involves counting the number of input configurations of a DNN that result in a violation of a safety property.
We propose a novel approach that returns the exact count of violations.
We present experimental results on a set of safety-critical benchmarks.
arXiv Detail & Related papers (2023-01-17T18:32:01Z) - A Learning-Based Optimal Uncertainty Quantification Method and Its
Application to Ballistic Impact Problems [1.713291434132985]
This paper concerns the optimal (supremum and infimum) uncertainty bounds for systems where the input (or prior) measure is only partially/imperfectly known.
We demonstrate the learning based framework on the uncertainty optimization problem.
We show that the approach can be used to construct maps for the performance certificate and safety in engineering practice.
arXiv Detail & Related papers (2022-12-28T14:30:53Z) - MAntRA: A framework for model agnostic reliability analysis [0.0]
We propose a novel model data-driven reliability analysis framework for time-dependent reliability analysis.
The proposed approach combines interpretable machine learning, Bayesian statistics, and identifying dynamic equation.
Results indicate the possible application of the proposed approach for reliability analysis of insitu and heritage structures from on-site measurements.
arXiv Detail & Related papers (2022-12-13T00:57:09Z) - Corruption-Robust Algorithms with Uncertainty Weighting for Nonlinear
Contextual Bandits and Markov Decision Processes [59.61248760134937]
We propose an efficient algorithm to achieve a regret of $tildeO(sqrtT+zeta)$.
The proposed algorithm relies on the recently developed uncertainty-weighted least-squares regression from linear contextual bandit.
We generalize our algorithm to the episodic MDP setting and first achieve an additive dependence on the corruption level $zeta$.
arXiv Detail & Related papers (2022-12-12T15:04:56Z) - Positivity Validation Detection and Explainability via Zero Fraction
Multi-Hypothesis Testing and Asymmetrically Pruned Decision Trees [7.688686113950607]
Positivity is one of the three conditions for causal inference from observational data.
To democratize the ability to do causal inference by non-experts, it is required to design an algorithm to test positivity.
arXiv Detail & Related papers (2021-11-07T08:32:58Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
We develop and leverage new tools, including recent breakthroughs from probability theory on robust isoperimetry.
Our results reveal fundamental tradeoffs between standard and robust accuracy that grow when data is imbalanced.
arXiv Detail & Related papers (2020-06-09T09:58:19Z) - High-Dimensional Robust Mean Estimation via Gradient Descent [73.61354272612752]
We show that the problem of robust mean estimation in the presence of a constant adversarial fraction can be solved by gradient descent.
Our work establishes an intriguing connection between the near non-lemma estimation and robust statistics.
arXiv Detail & Related papers (2020-05-04T10:48:04Z) - Interpretable Random Forests via Rule Extraction [0.0]
We introduce SIRUS, a stable rule learning algorithm which takes the form of a short and simple list of rules.
Our R/C++ software implementation sirus is available from CRAN.
arXiv Detail & Related papers (2020-04-29T08:13:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.